Protective coatings for intraocular wirelessly controlled microrobots for implantation : corrosion, cell culture, and in vivo animal tests

Autor: Pokki Juho, Ergeneman Olgaç, Chatzipirpiridis, George, Lühmann, Tessa, Sort Viñas, Jordi, Pellicer Vilà, Eva M. (Eva Maria), Pot, Simon A, Spiess, Bernhard M., Pané i Vidal, Salvador, Nelson, Bradley J.
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Popis: Grup: Gnm3 Funding Diseases in the ocular posterior segment are a leading cause of blindness. The surgical skills required to treat them are at the limits of human manipulation ability, and involve the risk of permanent retinal damage. Instrument tethering and design limit accessibility within the eye. Wireless microrobots suturelessly injected into the posterior segment, steered using magnetic manipulation, are proposed for procedures involving implantation. Biocompatibility is a prerequisite for these procedures. This paper investigates the use of cobalt-nickel microrobots coated with polypyrrole, and gold, which has been used as an ocular implant material. Polypyrrole has well-established biocompatibility properties, but no reports concerning its ocular implantation is available. Coated and uncoated microrobots were investigated for their corrosion properties, and solutions that had contained coated and uncoated microrobots for one week were tested for cytotoxicity by monitoring NIH3T3 cell viability. None of the microrobots showed significant corrosion currents and corrosion potentials were as expected in relation to the intrinsic nobility of the materials. NIH3T3 cell viability was not affected by the release medium, in which coated/uncoated microrobots were stored. In vivo tests inside rabbit eyes were performed using coated microrobots. There were no significant inflammatory responses during the first week after injection. An inflammatory response detected after two weeks was likely due to a lack of longer-duration biocompatibility. The results provide valuable information for those who work on implant technology and biocompatibility. Coated microrobots have the potential to facilitate a new generation of surgical treatments, diagnostics and drug-delivery techniques, when implantation in the ocular posterior segment will be possible.
Databáze: OpenAIRE