Orchestration of the neural stem cell fate by NRF2 and TAZ

Autor: Robledinos Antón, Natalia
Přispěvatelé: Cuadrado Pastor, Antonio, UAM. Departamento de Bioquímica, Instituto de Investigaciones Biomédicas 'Alberto Sols' (IIBM)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Biblos-e Archivo. Repositorio Institucional de la UAM
instname
Popis: Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Bioquímica. Fecha de lectura: 11-10-2019
Neurogenesis is a multiple step process that must be tightly regulated or otherwise results in pathological events. Therefore, a deep characterization of the molecular mechanisms that control the biology of neural stem/progenitor cells (NSPCs) will provide a better understanding of the role of neurogenic niches and new therapeutic strategies for neurodegenerative diseases and brain tumours. In this thesis we have analyzed the regulation of NSCs fate by the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (NRF2), which is considered a master regulator of cellular homeostasis, and the Transcriptional co-activator with PDZ-binding motif (TAZ), a major effector of the Hippo pathway. NRF2 controls the expression of a wide battery of cytoprotective genes that have a tremendous impact on physiological responses such as inflammation, senescence or metabolism. However, its relevance in neurogenesis is just starting to be unveiled. On the other hand, TAZ is a major effector of the Hippo pathway, which plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. However, the implication of TAZ in neurogenesis has not been analyzed. In this study, we have identified NRF2 as a regulator of hippocampal NSCs self-renewal and differentiation. We show that genetic manipulation of NRF2 results in the modulation of NSPCs differentiation and proliferation capacity. To assess the functional relevance of NRF2 in neurogenesis under pathological conditions, we analyzed the impact of NRF2 deficiency in neurogenesis of the subgranular zone (SGZ) of the hippocampus in a mouse model of Alzheimer´s Disease (AD). We found that NRF2 deficiency results in an accelerated loss of NSCs, loss of synaptic plasticity measured as long term potentiation (LTP) and impaired the execution of cognitive tasks. At the molecular level, we have identified NRF2 enhancer sequences, termed Antioxidant Response Elements (AREs), in the promoter region of the TAZ coding gene. Consequently, we show that genetic and pharmacological manipulation of NRF2 results in the modulation of TAZ gene expression in NSPCs. These findings open a new window to understand the molecular mechanisms underlying NRF2 function in stemness. We have also established a novel role of TAZ as repressor of neuronal differentiation, based on the transcriptional repression of SOX2 and the basic helix-loop-helix (bHLH) factors ASCL1, NEUROG2 and NEUROD1. Data mining of The Cancer Genome Atlas showed a negative correlation between TAZ and the expression of these proneurogenic factors in lower grade gliomas and glioblastomas. We found that TAZ favours glioblastoma CSCs tumorigenic capacity and that genetic modulation of TAZ in these cells inversely correlated with proneurogenic genes expression. Due to the relevance of these proneurogenic factors in the ablation of glioblastoma cancer stem cells (CSCs), this novel TAZ/proneurogenic factors axis may have important implications in the development of this type of brain tumours. The characterization of molecular mechanism governing NSPCs fate provides new insights to harness these cells for brain repair. Overall, this thesis describes a novel role of NRF2 and TAZ in the control of neural stem cell fate, suggesting a new strategy to combat brain pathology.
Databáze: OpenAIRE