Predicting Multidimensional Subjective Ratings of Children' Readings from the Speech Signals for the Automatic Assessment of Fluency

Autor: Gérard Bailly, Erika Godde, Anne-Laure Piat-Marchand, Marie-Line Bosse
Přispěvatelé: GIPSA - Cognitive Robotics, Interactive Systems, & Speech Processing (GIPSA-CRISSP), GIPSA Pôle Parole et Cognition (GIPSA-PPC), Grenoble Images Parole Signal Automatique (GIPSA-lab), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Grenoble Alpes (UGA), Laboratoire de Psychologie et NeuroCognition (LPNC ), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), e-FRAN Fluence, Bailly, Gérard
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: LREC 2020-12th Conference on Language Resources and Evaluation (LREC 2020)
LREC 2020-12th Conference on Language Resources and Evaluation (LREC 2020), May 2020, Marseille, France. pp.317-322
HAL
Popis: International audience; The objective of this research is to estimate multidimensional subjective ratings of the reading performance of young readers from signalbased objective measures. We here combine linguistic features (number of correct words, repetitions, deletions, insertions uttered per minute. . .) with phonetic features. Expressivity is particularly difficult to predict since there is no unique golden standard. We here propose a novel framework for performing such an estimation that exploits multiple references performed by adults and demonstrate its efficiency using recordings of 273 pupils.
Databáze: OpenAIRE