Calculating tangent sets to certain sets in functional spaces

Autor: Bednarczuk, Ewa, Pierre, Michel, Rouy, Elisabeth, Sokolowski, Jan
Přispěvatelé: Mathematical Analysis and Numerical Simulation of Non-Linear Models (NUMATH), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), INRIA
Jazyk: angličtina
Rok vydání: 1997
Předmět:
Zdroj: [Research Report] RR-3190, INRIA. 1997, pp.24
Popis: We give necessary and sufficient conditions for a given element to be a member of the second order tangent set $T»_{K}(f,v)$ to the positive cone $K$ in $L^{\infty}¸.$ Since, in general $T»_{K}(f,v)$ may be empty we give conditions on functions $f¸, v$ which ensure that the second tangent set is a cone. As an application of the results obtained we give a characterization of the elements of the first and second tangent set to the set $B={u\in W^{1,\infty}(Ømega)¸ |¸|\nabla u|^{2}\leq 1}¸.$
Databáze: OpenAIRE