Metal Organic Chalcogenolates (MOCs): 1D and 2D luminescent coordination polymers for optical technologies
Autor: | Veselska, O., Guillou, N., Ledoux, G., FATEEVA, A., Demessence, A. |
---|---|
Přispěvatelé: | IRCELYON-C'Durable (CDURABLE), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), IRCELYON, ProductionsScientifiques |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | European Materials Research Society Conference European Materials Research Society Conference, Jun 2018, Strasbourg France |
Popis: | SSCI-VIDE+CDFA+OVE:ADM; International audience; Hybrid materials with chalcogenate ligands (-ER = SR, SeR, TeR) and d10 coinage metals (M(I) = Cu, Ag and Au) are known for a long time mainly in the domains of biology and pharmaceutics.1 Indeed, copper-thiolates are present in most of the living organisms as metalloproteins, silver-thiolates are recognized for their anti-bacterial activity and some gold-thiolates, as the Myochrysine, have been used as antiarthritic drugs. Today, the d10 coinage Metal Organic Chalcogenates (MOCs) are gaining a growing relevance in materials science for their semiconductivity and photoluminescence properties. Indeed, the photoemission of these compounds is attributed to the presence of d10 coinage metals and their ability to display metallophilic interactions. Neutral MOCs, defined with the formula [M(ER)]n, can form cyclic oligomers and extended coordination polymers with 1D or 2D structures as a limited number. In this presentation we will show the variety of the chain-like and lamellar structures of these MOCs, associated to a rich palette of photophysical properties. Thus, some compounds exhibit high quantum yield (~70 %) in the solid state and some have an intrinsic triple emission associated with luminescence thermochromism allowing optical temperature sensing. This study will show the great potential of the MOCs as phosphorescent hybrid materials and their great potential in electronic devices, sensors or photocatalysis.1. Veselska, O.; Demessence, A., Coord. Chem. Rev. 2018, 355, 240. |
Databáze: | OpenAIRE |
Externí odkaz: |