Immobilizing catalysts on textiles- case of zerovalent iron and glucose oxidase enzyme
Autor: | Morshed, Mohammad Neaz |
---|---|
Přispěvatelé: | Génie et Matériaux Textiles (GEMTEX), Ecole nationale supérieure des arts et industries textiles de Roubaix (ENSAIT), Université de Lille, Högskolan i Borås (Suède), Soochow university (Suzhou, China), Nemeshwaree Behary Massika, Vincent Nierstrasz |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Fenton hétérogène
Heterogen Fenton 壳聚糖 零价铁。 Oorganiska katalysatorer 生物芬顿 产业纺织品 Modification de surface textile Réaction de Fenton Biocatalyseurs Avlägsnande av färgämnen Phenol removal Teknik och teknologier Dye removal Textile surface modification Textil bioteknik 纤维催化剂 聚乙烯胺 Inorganic catalysts Enzymimmobilisering Modifiering av textilytor 染料去除 废水处理 纺织生物技术 Engineering and Technology Pathogenic bacteria removal 三乙氧基硅烷 Katalytisk reduktion Detoxification Catalyst immobilization Textile biotechnology Zerovalent järn Textile catalyst 多相催化 Catalytic reduction Traitement des eaux usées 革兰氏阳性(G+ve)菌/革兰氏阴性(G-ve)菌 Polyéthylèneimine 类芬顿 Avlägsnande av patogena bakterier 抗菌纺织品 Katalysatorimmobilisering Glucose oxydase Plasmaekoteknik Traitement catalytique Heterogeneous Fenton Élimination de phénols Glucose oxidase Fenolavlägsnande 超支化树状大分子 聚酰胺胺树状大分子(3-氨基丙基) Wastewater treatment Catalyse hétérogène Biotechnologie textile Catalyseurs inorganiques Hyperbranched dendrimers 酶固定化,物理吸附 Élimination de colorants Kitosan 生物催化剂 Fer zéro-valent 生物催化 Bio-Fenton hétérogène 纺织品表面改性 Polyester nonwoven fabric Heterogen bio-Fenton Polyester fiberduk 环境治理 Biocatalysts Textil katalysator 涤纶无纺布 Zerovalent iron Polyetylenimin Écotechnologie plasma 葡萄糖氧化酶 1-硫代甘油 Avloppsrening Surface modifications of textile Glukosoxidas Miljösanering Immobilisation d’enzymes Hypergrenade dendrimerer Heterogeneous bio-Fenton Polyethylenimine Assainissement de l’environnement Chitosane Catalyseur textile Heterogen katalys Enzyme immobilization 氧化还原酶 苯酚去除 Chitosan Heterogeneous catalysis Non-tissé Polyester Environmental remediation 金属颗粒:铁固定化 Élimination de bactéries pathogènes [CHIM.CATA]Chemical Sciences/Catalysis Immobilisation de catalyseurs Dendrimères hyper-ramifiés Plasma ecotechnology Reduction de catalyseurs Biokatalysatorer |
Zdroj: | Catalysis. Université de Lille; Högskolan i Borås (Suède); Soochow university (Suzhou, China), 2021. English. ⟨NNT : 2021LILUI039⟩ |
Popis: | Catalytic systems are one of the most effective technologies of modern chemical processes. The system uses a molecule called ‘catalyst’ that is capable of catalyzing a reaction without being produced or consumed during the process. A catalytic system requires the separation of catalysts from products after each cycle, which is an expensive and resource-intensive process. This brought to the relevance of immobilization of catalyst, where catalysts are bind to a solid support material that will ensure the easy separation of catalyst. Immobilized catalysts are reusable and usually show better stability than the free catalyst. However, immobilization of catalyst is challenging, as it requires exclusive support material involving a complex preparation process. In many instances, the preparation of support material is more resource-intensive and expensive than the catalyst themselves. Therefore, this doctoral thesis focused on the innovative concept of using textile as reliable, widely accessible, and versatile support material for catalyst immobilization. Evidence from systematic experiments was gathered for the case of immobilization of an inorganic catalyst (zerovalent iron-Fe0) and a biocatalyst (glucose oxidase -GOx) on textile support. The goal of this thesis is to establish the feasibility of textile as support material for immobilization of catalyst in the pursuit of fabrication of heterogeneous catalytic system (oxidative and reductive) for wastewater treatment. Polyester nonwoven fabric (PF) was chosen as textile support material for catalyst immobilization due to both qualitative (high strength, porosity, biocompatibility and resistance to most acids, oxidizing agents, and microorganisms) and commercial (availability, cheap and easily customizable) advantages. A combination of eco-friendly and resource-efficient processes (such as plasma treatment, hyperbranched dendrimer, bio-based polymers) has been used for tailoring the PF surface with favorable surface chemical properties in the view of high and stable immobilization yield of the catalyst. The thesis has three distinct parts related to immobilizing catalyst on textiles- (a) immobilization of Fe0 on PF and optimizing their feasibility in both oxidative and reductive catalytic system; (b) immobilization of GOx on PF and optimizing their use in a bio-catalytic system; (c) design of the complete heterogeneous bio-Fenton system using immobilized catalysts (Fe0 and GOx). In all parts, the hydrophobic surface of PF was activated by plasma ecotechnology (either air atmospheric -AP or cold removal plasma-CRP) followed by chemical grafting of hyperbranched dendrimers (polyethylene glycol-OH or polyamidoamine ethylene-diamine core) or functional polymers (3-aminopropyl-triethoxysilane, polyethylenimine, chitosan, or 1-thioglycerol) before immobilizing either of two catalysts. The immobilization of Fe0 was carried out through either the in-situ or ex-situ reduction-immobilization method, whereas GOx was immobilized through the physical adsorption method. Several approaches were explored in search of optimum conditions for catalyst immobilization as well as to improve the catalytic performance of immobilized catalysts. Diverse analytical and instrumental techniques were used to monitor the surface modification of textiles, efficiency of immobilization of catalysts, Physico-chemical properties of immobilized catalysts, and their catalytic activities in the removal of dyes, phenols, or pathogenic pollutants from water. Results from plasma treatment showed that both AP and CRP successfully activated the PF surface through integrating polar functional groups (–COOH and –OH) by AP and carboxyl/hydroxyl (–COOH/–OH), amino (–NH2) functional groups by CRP. Along with that, grafted hyperbranched dendrimers and functional polymers on plasma-activated PF provided a tailor-made surface with specific end functional groups. Regarding the immobilization of Fe0 on PF, the results revealed that the reduction method (in-situ or ex-situ) of producing Fe0 have synergistic effects on the morphology, stability, particle size, and distribution of the immobilized Fe0. The surface chemical properties of PF also influenced the stability of immobilized Fe0 and related properties as observed throughout various studies. Detailed results revealed that a PF surface rich in –COOH, –OH, and –SH functional groups favors the loading and stabilization of Fe0 over surface rich in – NH2 functional groups. To end with, all Fe0-immobilized PF showed high catalytic activates in the removal of pollutants from water in both oxidative and reductive systems. In the case of GOx-immobilized PF, the success of immobilization of enzyme on textile was found to be related to the type and extent of surface functional groups present on the PF surface. The results demonstrated that PF surface rich in –COOH, – NH2 functional groups guaranteed higher loading and stability of GOx compared to –COOH, –OH functional groups-rich surface. These results carry great importance as they provide evidence of textile:enzyme interactions and grounds for further robust immobilization of GOx on textile support through surface engineering. As a proof of concept, this thesis also reveals the first successful design of a complete heterogeneous bio-Fenton system for wastewater treatment using immobilized catalysts (Fe0 and GOx). The novelty of the research presented in this doctoral thesis is primarily attributed to the novelty of immobilizing two different types of catalysts (inorganic catalyst and biocatalysts) on synthetic textile support for wastewater treatment application. In general, this thesis contributes to general knowledge of the heterogeneous catalytic system, Fenton/Fenton-like system, and the bio-Fenton system as well as it opens promising prospects of the use of textile as support material for immobilizing different catalysts for a wide range of applications. Katalytiska system är en av de effektivaste teknikerna för moderna kemiska processer. I processen används en molekyl, en ”katalysator” som är kapabel att pådriva en kemisk reaktion utan att själv bli producerad eller förbrukad under processens gång. Katalytiska system kräver separation av katalysatorerna från andra produkter efter varje cykel, vilket är både kostsamt och resurskrävande. Därför är det relevant att immobilisera katalysatorerna genom att binda dem till ett solitt stödmaterial som möjliggör att katalysatorerna enkelt kan separeras. Immobiliserade katalysatorer kan återanvändas och visar ofta på bättre stabilitet än fria katalysatorer. Men det är en långdragen process att immobilisera katalysatorer då det kräver exklusiva stödmaterial och ett komplext förberedelseförlopp. I många fall är stödmaterialen mer kostsamma än katalysatorerna själva. I denna doktorsavhandling arbetar jag därför med ett innovativt koncept, där jag använder textil som ett billigt och enkelt stödmaterial för immobilisering av katalysatorer. Genom systematiskt utförda experiment har underlag samlats in för att visa på immobilisering av en oorganisk katalysator (nollvalent järnpartikel-Fe0) och ett biokatalysator (glukosoxidasenzym-GOx) på en textil stödstruktur. Syftet med denna avhandling är att fastställa möjligheten att använda textil som stödmaterial för immobilisering av katalysatorer i jakten på framställningen av ett heterogent katalytiskt system (oxiderande och reducerande) för rening av avloppsvatten. Ett nonwoventyg av polyester (PF) valdes som textilt stödmaterial för immobilisering av katalysatorer för dess kvalitativa (hög styrka, porositet, biokompabilitet och resistans mot de flesta syror, oxiderande medel samt mikroorganismer) och kommersiella (tillgänglighet, låg kostnad och enkelhet att modifiera) fördelar. En kombination av miljövänliga och resurseffektiva processer (så som plasmabehandling, användning av hypergrenade dendrimerer, biobaserade polymerer) har använts för att modifiera PF ytan till fördelaktiga ytkemiska egenskaper gällande hög och stabil utdelning av immobiliserade katalysatorer. Avhandlingen består av tre separata delar som handlar om immobilisering av katalysatorer på textiler: (a) immobilisering och stabilisering av oorganiskt Fe0 på PF och optimering av dess möjligheter i oxiderande och/eller reducerande katalytiska system, (b) immobilisering av GOx på PF och optimering av dess användning i biokatalytiska system, (c) utformning av heterogena bio-Fentonsystem med hjälp av immobiliserade katalysatorer (Fe0 och GOx). I alla delar aktiverades PF:s hydrofobiska fiberyta genom en plasmabehandling (antingen atmosfärisk plasma -AP eller kall fjärrplasma -CRP) efterföljt av kemisk ympning med hypergrenade dendrimerer (polyetylenglykol-OH/polyamidoamin-etylendiaminkärna) eller polymerer som innehåller den funktionella gruppen amin/tiol (3-aminopropyl-trietoxysilan/polyetylenimin, kitosan/1-tioglycerol) innan immobilisering av endera katalysatorerna. Immobiliseringen av Fe0 genomfördes med in-situ eller ex-situ reduktions-immobiliseringsmetod, medan GOx immobiliserades genom en fysisk adsorptionsmetod. Ett antal tillvägagångssätt utforskades i sökandet efter optimala förhållanden för immobilisering av katalysatorer samt förbättringsmöjligheter av immobiliserade katalysatorers katalytiska förmåga. Olika analytiska och instrument-tekniker användes för att kontrollera ytmodifieringen av textilier, effektiviteten av immobiliserade katalysatorer, fysiokemiska egenskaper av immobiliserade katalysatorer och deras katalytiska aktivitet för avlägsnandet av färgämnen, fenoler eller patogena föroreningar från vatten. Resultaten från plasmabehandlingen visade att båda AP och CRP framgånsrikt aktiverat PF ytan genom integrering av polära funktionella grupper (–COOH och –OH) genom AP och karboxyl/hydroxyl-grupper (–COOH/–OH) och aminogrupper (–NH2) genom CRP. Dessutom kunde ympade hypergrenade dendrimerer och funktionella polymerer på plasma-aktiverad PF ge en skräddarsydd yta med specifika funktionella ändgrupper. När det gäller immobiliseringen av Fe0 på en PF-yta visade resultaten att reduktionsmetoderna (in-situ eller ex-situ) för framställning av Fe0-partiklar hade synergieffekter på hur väl immobiliseringen lyckades när det gäller morfologi, stabilitet, partikelstorlek och spridning av immobiliserad Fe0. Ytkemiska egenskaper av PF påverkade också stabiliteten av immobiliserad Fe0 och tillhörande egenskaper, något som observerats genom flertalet studier. Detaljerade resultat visade att en PF-yta som innehåller de funktionella grupperna –COOH, –OH, och –SH främjar belastning och stabiliseringen av Fe0 mer än en yta rik på de funktionella grupperna – NH2. Slutligen, alla Fe0-immobiliserade PF prov visade hög katalytisk aktivitet i avlägsnandet av föroreningar i vatten i både oxiderande och reducerande system. När det gäller GOx-immobiliserade PF prov fanns det att lyckad immobilisering av enzym på textil var relaterad till typen och omfattningen av funktionella ytgrupper integrerade i PF-ytan. Resultaten visade vidare att en PF-yta med –COOH eller – NH2-grupper garanterade högre belastning och stabilitet hos GOx jämfört med -COOH och -OH rika ytor. Dessa resultat är viktiga eftersom de styrker interaction mellan den textila ytan och enzymer, vilket utgör en grund för möjligheterna för starka immobiliseringar av GOx på textila stödmaterial. Som validering av konceptet så visar denna avhandling också den första lyckade framtagningen av ett komplett heterogent bio-Fenton system för rening av avloppsvatten med hjälp av immobiliserade katalysatorer (Fe0 och GOx). Denna avhandling om immobilisering av katalysatorer på textil och applicering av immobiliserade katalysatorer i rening av avloppsvatten (både oxiderande och reducerande system) bidrar inte bara till allmän kunskap om heterogena katalytiska system, Fenton/Fenton-system och bio-Fenton system, utan öppnar också upp för lovande möjligheter att använda textilier som stödmaterial för immobilisering av olika katalysatorer för ett brett spektrum av användningsområden. Les systèmes catalytiques font partie des technologies les plus efficaces des procédés chimiques modernes. Le système utilise une molécule appelée « catalyseur » qui est capable de catalyser une réaction sans n’être produit ni consommé pendant le procédé. Le système catalytique requiert de séparer les catalyseurs des produits après chaque cycle, ce qui est un processus coûteux et gourmand en ressources. Cela montre la pertinence de l’immobilisation des catalyseurs, où les catalyseurs se lient à un matériau de support solide afin de garantir la séparation facile des catalyseurs. Cependant, l'immobilisation des catalyseurs n’est pas toujours facile, car elle nécessite un procédé de préparation complexe du matériau de support comprenant multiples étapes. Dans de nombreux cas, la préparation du matériau de support est plus énergivore et plus coûteuse que les catalyseurs. Cette thèse de doctorat porte sur un concept innovant d'utilisation du textile comme matériau de support peu coûteux et robuste pour l’immobilisation de deux catalyseurs différents. Des preuves expérimentales ont été rassemblées pour le cas de l'immobilisation de particules de fer zéro-valent (catalyseur inorganique Fe0) et l'enzyme glucose oxydase (GOx-biocatalyseur) sur support textile. Le but de cette thèse est de confirmer l’utilisation potentielle de ces catalyseurs supportés au textile, pour le traitement des eaux usées, par le biais d’un système catalytique robuste (oxydative ou réductive). Un tissu non tissé en polyester (PF) a été choisi comme matériau de support textile pour l'immobilisation des catalyseurs en raison des avantages à la fois qualitatifs (haute résistance, porosité, biocompatibilité et résistance à la plupart des acides, agents oxydants et micro-organismes) et commerciaux (disponibilité, bon marché et facilement personnalisable). Une combinaison de procédés et de matériaux plus écologiques et économes en ressources (traitements plasma, des dendrimères, des polymères biosourcés) a été utilisée pour la modification de surface des fibres de polyesters créant ainsi des groupements fonctionnels capables de mieux fixer les catalyseurs (Fe0 et GOx), en termes de quantité et stabilité, tout en préservant les performances inhérentes des catalyseurs. La thèse comporte trois parties distinctes liées à l'immobilisation des catalyseurs sur textiles : (a) l'immobilisation et la stabilisation de Fe0 inorganique sur PF et l'optimisation de leur viabilité dans un système catalytique oxydant et / ou réducteur ; (b) l'immobilisation des GOx sur les PF et l'optimisation de leur utilisation dans les systèmes bio-catalytiques ; (c) la conception d'un système bio-Fenton hétérogène utilisant des catalyseurs immobilisés (Fe0 et GOx) sur textile. Dans toutes les parties, la surface de la fibre hydrophobe de PF a d'abord été activée par un traitement plasma atmosphérique sous air (AP) ou par un plasma froid (CRP) suivi d'un greffage chimique de dendrimères hyper-ramifiés ou de polymères riches en groupements amine ou thiol. Les dendrimères utilisés sont à base de noyau polyéthylène glycol-OH ou de polyamidoamine éthylène diamine, tandis que les polymères riches en amine/thiol utilisés sont le 3-aminopropyl-triéthoxysilane, le polyéthylèneimine, le chitosane et le 1-thioglycérol. Cela a été suivi par l'immobilisation de catalyseurs Fe0 via des méthodes de réduction in-situ / ex-situ ou par l’immobilisation d’enzymes GOx via l'adsorption physique. Un nombre d’approches a été exploré dans la recherche des conditions optimales pour l’immobilisation de catalyseurs ainsi que pour l’amélioration des performances catalytiques des catalyseurs immobilisés. Diverses techniques analytiques et instrumentales ont été utilisées pour surveiller la modification de surfaces des textiles, l’efficacité de l’immobilisation des catalyseurs, les propriétés physico-chimiques des catalyseurs immobilisés et leur activité catalytique dans l'élimination des colorants, des phénols ou des contaminants pathogènes dans les eaux usées. Les résultats ont montré que, pour les deux types de traitement plasma, l'AP a activé avec succès la surface de la fibre PF avec l'intégration de groupes fonctionnels polaires (–COOH et –OH), tandis que la CRP avec un mélange O2 / N2 intègre à la fois des groupes carboxyle / hydroxyle (–COOH / –OH) et des groupes fonctionnels amines (–NH2). Parallèlement, le greffage des dendrimères hyper-ramifiés ou des polymères ont conduit à des propriétés de surface faites sur-mesure avec des groupes fonctionnels spécifiques à la surface de la fibre PF. En ce qui concerne l'immobilisation de Fe0 sur une surface PF, les résultats ont révélé que les méthodes de réduction (in-situ ou ex-situ) pour la formation de particules Fe0 avaient des effets synergiques sur le succès de l'immobilisation en termes de morphologie, de stabilité, de taille et de distribution des particules. Les propriétés chimiques de surface PF ont également influencé la stabilité du Fe0 immobilisé et des propriétés associées, comme observé tout au long des études. Les résultats détaillés dans cette thèse ont révélé qu'une surface PF riche en groupes fonctionnels –COOH, –OH et –SH favorise la quantité et la stabilisation de Fe0 en comparaison avec une surface riche en groupes fonctionnels -NH2. Les catalyseurs Fe0 immobilisés sur PF ont montré une propriété catalytique élevée dans les systèmes catalytiques pour l'élimination des polluants aquatiques par le biais d'un système hétérogène de type Fenton ou d’une réduction catalytique. Dans le cas des GOx immobilisés sur le polyester-PF, ce résultat est lié au type et à l'étendue des groupes fonctionnels de surface intégrés à la surface PF. Les résultats ont démontré qu'une surface PF riche en groupes fonctionnels –COOH, –NH2 assurait une quantité et une stabilité plus élevées de GOx par rapport à une surface PF riche en groupes fonctionnels –COOH, –OH. Ces résultats portent grande importance car ils fournissent des preuves de l’interaction entre la surface textile et l’enzyme, posant les bases pour des possibilités d’immobilisation forte de GOx sur des matériaux textiles de support. En tant que preuve de concept, cette thèse révèle également la première conception fructueuse d’un système bio-Fenton complètement hétérogène pour le traitement des eaux usées utilisant des catalyseurs immobilisés (Fe0 et GOx). Le caractère innovant de la recherche présentée dans cette thèse de doctorat est tout d'abord attribuée à la nouveauté de l'immobilisation de deux types de catalyseurs (catalyseurs inorganiques et biocatalyseurs) sur non-tissé polyester pour l’application dans le traitement des eaux usées. De manière générale, cette thèse contribue à la connaissance générale du système catalytique hétérogène, des procédés de Fenton et de bio-Fenton, aussi bien qu’elle ouvre des perspectives prometteuses d’utilisation de textiles comme matériau de support pour l’immobilisation de divers catalyseurs pour un large éventail d’applications. 催化系统是当代化学处理手段中最有效的技术之一。 这一项技术利用“催化剂”这种小分子去催化一个反应。 在这一过程中,“催化剂”既不会被消耗,也不是这一化学反应的产物。催化系统需要在每次反应后分离催化剂,催化剂的分离过程通常是昂贵且资源密集。过程中涉及到催化剂的固定化,即催化剂与固体载体材料结合,以确保催化剂易于分离。固定化催化剂可重复使用,通常比催化剂在溶液中表现出更好的稳定性。然而,催化剂的固定化具有挑战性,因为它需要多步骤复杂的制备过程,尤其是载体材料。在许多情况下,制备载体材料比制备催化剂更耗费资源和成本。 基于此,本论文提出了一个创新的概念,即使用纺织品作为廉价并且易于制备的载体材料来固定催化剂。本文收集了无机催化剂(Fe0-零价铁离子)和生物催化剂(GOx-葡萄糖氧化酶)在纺织品上固定化的实验证据。本论文的目的是建立纺织品作为催化剂固定化载体材料的可行性,以寻求制造异质催化系统(氧化反应和还原反应)用于废水处理。涤纶无纺布(PF)由于其质量上的(高强度、孔隙率、生物相容性和对大多数酸、氧化剂和微生物的耐受性)和商业上的(可用性、廉价和易于定制)的优点,被优选为催化剂固定化的纺织支撑材料。通过采用结合环保和资源高效的工艺(如等离子体处理、使用超支化树状大分子、生物基聚合物)可以对 PF 进行表面改性而使其具有良好的表面化学性质,从而可以获得催化剂的高固定化率和稳定固着。 本论文分为三部分:(a)无机 Fe0 在 PF 上的固定,以及在氧化和/或还原催化体系中的活性优化;(b)将 GOx 固定在 PF 上并优化其在生物催化系统中的应用;(c)纺织品固定化催化剂(Fe0 和 GOx)非均相生物-芬顿体系的设计。在所有体系中,首先通过空气常压(AP)或冷远程等离子体(CRP)处理活化 PF的疏水纤维表面,然后在其上化学接枝超支化树状大分子(聚乙二醇 OH/聚酰胺胺-乙二胺核)或功能性聚合物(3-氨丙基三乙氧基硅烷/聚乙烯亚胺,壳聚糖/1-硫代甘油)去固定两种催化剂中的任意一种。然后用原位/非原位还原法固定 Fe0,或用物理吸附法固定 GOx。通过进行一系列的试验方法,以研究催化剂固定化的最佳条件,并且提升催化剂的催化固定性能。 两种等离子体处理的结果表明,AP 通过集成极性官能团(–COOH 和–OH)成功活化了 PF 纤维表面,而使用 O2 / N2气体的 CRP 则集成了羧基/羟基(–COOH / –OH )和氨基(–NH2)官能团。随之而来的是,接枝的超支化树枝状大分子或富含胺/硫醇官能团的聚合物为定制的表面提供了在 PF 纤维表面具有特定末端官能团的表面。多种仪器和分析技术验证了 PF 纤维表面的活化和官能团定制效果。纺织品的表面改性;催化剂的固定效率以及固定后催化剂的物理化学性能;对污水中染料,苯酚以及致病污染物的催化反应被一系列理论和仪器分析进行了监测。结果表明,还原法制备 Fe0 粒子的方法(原位或非原位)在形貌、稳定性、粒径和分布等方面对 Fe0的成功固定具有协同效应。随着还原方法的采用,PF 的表面化学性质也影响了固定化 Fe0 的稳定性及相关性质。本论文所考虑的多种方法的详细结果表明,富含-COOH、-OH 和-SH 官能团的 PF 表面比富含-NH2 官能团的 PF 表面更有利于 Fe0 的负载和稳定。Fe0 固定化 PF 催化剂在非均相芬顿/类芬顿体系、催化还原体系和病原体抑制体系中均表现出良好的催化性能。在固定化 GOx 的 PF样品中,CRP 比 AP 更能保证固定化 GOx 的高负载和稳定性。这一结果与集成在 PF 表面的表面官能团的类型和程度有关。当 GOx 被固定在特制的 PF 表面(用交联聚合物)时,也观察到了类似的现象。结果进一步表明,与富含-COOH, - OH 这两种官能团的表面相比,含有-COOH 或-NH2 基团的 PF 表面确保了GOx 的较高负载量和稳定性,这反映在所得 GOx 固定化纺织品的催化性能上。这一结果的重要性在于它提供了酵素于纺织材料表面应用的证据并且为 GOx 强大的固化作用应用在纺织支撑材料上的可能性打下了基础。最后,本论文研究在纺织品上使用固定化催化剂的异质生物芬顿系统进行的实验, 提供了与概念证明有关的充分证据并且展示了利用固定化催化剂(Fe0 和 GOx)设计的首个成功的为污水处理设计的异质生物芬顿系统。 本博士论文的创新之处首先在于将两种催化剂(无机催化剂和生物催化剂)固定在涤纶无纺布上用于废水处理的新颖性。总的来说,这一项论文研究有助于催化系统、芬顿和生物芬顿工艺的一般认识同时也有助于提高污水处理系统的效率和可持续性。 |
Databáze: | OpenAIRE |
Externí odkaz: |