Hybrid learning scheme for data mining applications

Autor: Babu, TR, Murty, MN, Agrawal, VK
Přispěvatelé: Ishikawa, M, Hashimoto, S, Paprzycki, M, Yoshida, K, Barakova, E, Koppen, M, Corne, DW, Abraham, A
Jazyk: angličtina
Rok vydání: 2005
Předmět:
Zdroj: IndraStra Global.
ISSN: 2381-3652
Popis: Classification of large datasets is a challenging task in Data Mining. In the current work, we propose a novel method that compresses the data and classifies the test data directly in its compressed form. The work forms a hybrid learning approach integrating the activities of data abstraction, frequent item generation, compression, classification and use of rough sets.
Databáze: OpenAIRE