Popis: |
In this thesis, the focus has been the study of deformation structures in stainless steels by using electron backscatter diffraction (EBSD). Via increased knowledge of the evolution of the substructure during deformation, the design and control of the manufacturing process can be improved. A relation was found between the active deformation mechanisms, the evolution of low angle boundaries (LABs) and the strain hardening rate. When deformation twinning was an active deformation mechanism in an austenitic stainless steel with lower stacking fault energy (SFE), the strain hardening rate was maintained up to large strains due to formation of LABs. The deformation twin boundaries acted as new obstacles for dislocation slip which in turn increased the formation of LABs even further. During deformation by slip in an austenitic stainless steel with a higher SFE, the strain hardening rate instead decreased when LABs were formed. A high value of SFE promotes dislocation cross slip which in turn increases annihilation of dislocations leading to a minor increase in LAB formation. Deformation structures formed in surface grains during in situ tensile tests were found to develop at lower strains than in bulk grains obtained from interrupted conventional tensile tests. This behavior is consistent with the fact that dislocations sources and deformation twinning operate at approximately half the stress on a free surface as compared to the bulk. The deformation structures were quantified by measuring size distributions for entities bounded by LABs and high angle boundaries (HABs). The size distributions were found to be well described by bimodal lognormal distribution functions. The average size for the distribution of small grains and subgrains correlated well with the mean free distance of dislocation slip and to the strain hardening. QC 20180514 |