Hierarchical conditional random field for multi-class image classification

Autor: Michael Ying Yang, Förstner, W., Drauschke, M.
Přispěvatelé: Department of Earth Observation Science
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: VISAPP 2010-Proceedings of the International Conference on Computer Vision Theory and Applications, 464-469
STARTPAGE=464;ENDPAGE=469;TITLE=VISAPP 2010-Proceedings of the International Conference on Computer Vision Theory and Applications
Scopus-Elsevier
Popis: Multi-class image classification has made significant advances in recent years through the combination of local and global features. This paper proposes a novel approach called hierarchical conditional random field (HCRF) that explicitly models region adjacency graph and region hierarchy graph structure of an image. This allows to set up a joint and hierarchical model of local and global discriminative methods that augments conditional random field to a multi-layer model. Region hierarchy graph is based on a multi-scale watershed segmentation.
Databáze: OpenAIRE