Um framework para facilitar o desenvolvimento de aplicações móveis de fenotipagem digital

Autor: MENDES, Jean Pablo Marques
Přispěvatelé: TELES, Ariel Soares, SILVA, Francisco José da Silva e, COUTINHO, Luciano Reis, COELHO, Joel José Puga, RODRIGUES, Joel José Puga Coelho
Jazyk: portugalština
Rok vydání: 2022
Předmět:
Zdroj: Biblioteca Digital de Teses e Dissertações da UFMA
Universidade Federal do Maranhão (UFMA)
instacron:UFMA
Popis: Submitted by Jonathan Sousa de Almeida (jonathan.sousa@ufma.br) on 2022-11-21T12:43:46Z No. of bitstreams: 1 JEANPABLOMARQUESMENDES.pdf: 4514553 bytes, checksum: dae24e23a9efbe5e83aa7c26fbf4a63f (MD5) Made available in DSpace on 2022-11-21T12:43:46Z (GMT). No. of bitstreams: 1 JEANPABLOMARQUESMENDES.pdf: 4514553 bytes, checksum: dae24e23a9efbe5e83aa7c26fbf4a63f (MD5) Previous issue date: 2022-05-06 CAPES Mental health disorders have a high prevalence in the world population. With the coron- avirus (COVID-19) pandemic, there was a requirement for social distancing, aggravating problems related to mental health and well-being. The proliferation of smartphones presents opportunities for data collection to study human behavior and health. They have been used in mental health studies, as they have several embbeded sensors that can capture measurements in people’s daily lives. Traditionally, mental disorders are diagnosed by mental health professionals (e.g., psychiatrists, psychologists) on the basis of symptoms identified from patient interviews and self-reported experiences. However, patients often resort to events that occurred days, weeks or months ago, which can compromise the diag- nosis, due to memory and desirability biases. To mitigate these biases, digital phenotyping appears, collecting data passively (without direct user interaction) using mobile devices. This work aims to present a framework to facilitate the development of digital phenotyping mobile applications, called OpenDP. The proposed solution is extensible and reusable, as it allows the inclusion of modules for processing raw context data, and can be applied to different mental disorders and to the monitoring of human well-being. In addition, the framework was developed using the middleware M-Hub/CDDL to collect data from sensors (physical and virtual) and distribute them among the internal components of the framework and with the broker external. Case studies were conducted to demonstrate that the proposed solution was able to compose digital phenotypes from the inference of high-level information generated by the data processing modules. It was also demonstrated the ability of the mobile solution to add data processing modules (plugins). By aiming at developing a mobile solution for mobile devices that does not cause a great impact on energy consumption, an experimental evaluation was carried out analyzing the impact on energy consumption of the smartphone user. The results were satisfactory, showing through the experimental evaluation that the battery consumption was small. Os transtornos de saúde mental têm alta prevalência na população mundial. Com a pan- demia do coronavírus (COVID-19), houve a exigência de distanciamento social, agravando os problemas relacionados a saúde mental e bem-estar. A proliferação dos smartphones apresenta oportunidades para a coleta de dados para estudar o comportamento e saúde hu- mana. Eles têm sido utilizados em estudos na saúde mental, por possuírem vários sensores embutidos que podem capturar medições no dia-a-dia das pessoas. Tradicionalmente, os transtornos mentais são diagnosticados por profissionais de saúde mental (e.g., psiquiatras, psicólogos) apenas com base nos sintomas identificados a partir de entrevistas com pacien- tes e experiências autor-relatadas. No entanto, os pacientes costumam recorrer a eventos ocorridos dias, semanas ou meses atrás, o que pode comprometer o diagnóstico, devido ao vieses de memória e desejabilidade. Para mitigar esses vieses, surge a fenotipagem digital, coletando dados de forma passiva (sem interação direta do usuário) com uso de dispositivos móveis. Este trabalho visa apresentar um framework para facilitar o desenvolvimento de aplicativos móveis de fenotipagem digital, chamado OpenDP. A solução proposta é extensível e reusável, por permitir a inclusão de módulos de processamento de dados brutos de contexto, e podendo ser aplicada a diferentes transtornos mentais e ao monitoramento do bem-estar humano. Além disso, o framework foi desenvolvido sobre o middleware Mobile Hub (M-Hub)/Camada de Distribuição de Dados de Contexto (CDDL) para coletar os dados de sensores (físicos e virtuais) e distribuí-los entre os componentes internos do framework e com o broker externo. Estudos de caso foram conduzidos para demonstrar que a solução proposta conseguiu compor fenótipos digitais a partir da inferência de informações de alto nível geradas pelos módulos de processamento de dados. Também foi demonstrado a capacidade da solução móvel em adicionar módulos de processamento de dados (plugins). Visando desenvolvedor uma solução móvel para dispositivos móveis que não cause um grande impacto no consumo de energia, foi realizada uma avaliação experimental analisando o impacto no consumo de energia do smartphone do usuário. Os resultados foram satisfatórios, mostrando através da avaliação experimental que o consumo de bateria foi pequeno.
Databáze: OpenAIRE