Application de la fabrication additive à la modélisation physique des joints et des massifs rocheux, par approches expérimentales et numériques

Autor: Jaber, Jana
Přispěvatelé: GeoRessources, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), Université de Lorraine, Olivier Deck, Marianne Conin
Jazyk: francouzština
Rok vydání: 2020
Předmět:
Zdroj: Génie civil. Université de Lorraine, 2020. Français. ⟨NNT : 2020LORR0071⟩
Popis: This thesis presents a study of the application of additive manufacturing (known as 3D printing) to rock mechanics. It is part of a larger project aimed at building a 2m3 physical model of an explicit discontinuous rock mass, whose behaviour is mainly controlled by discontinuities. The 3DP technology adopted in this work is selective laser sintering, and the material is Polyamide 12. First, we present the experimental results of the mechanical characterization of artificial rock joints constructed by 3DP. Two joint families are tested. The first is characterized by a fixed aperture (0,4mm), a simplified geometry (planar or sawtooth), and containing rock bridges. The mechanical characterization shows that these joints exhibit a mechanical behavior similar to that of natural rock joints under shear tests, with a cohesion driven by the rock bridges, and a friction angle which depends on the angle of the asperities. The second family consists of joints with more realistic roughnesses, to which a JRC value, commonly used to describe natural joints, can be assigned. Again, experimental results show the potential of artificial joints to reproduce the mechanical behavior of natural joints, and to respect the Barton-Bandis criterion. Experimental studies are coupled with numerical modeling, using the UDEC software, to define the appropriate model that reproduces the experimental results, and to calibrate the mechanical parameters of both joints type. After defining different artificial joints with controlled parameters, cylindrical samples (16 x 32 cm) containing two and eight planar discontinuities with rock bridges are printed and tested under uni-axial compression. This is a first attempt at an explicitly discontinuous physical model containing joints with controlled mechanical behaviour. The mechanical behavior of these samples highlights the influence of discontinuities in controlling the global behavior and resistance of rock masses. The results are then compared to a numerical modeling under 3EDC. Finally, scaling laws are applied to the previous results. The application of scale factors to the experimental results shows the possibility of representing natural rock mass and rock joints with artificial 3DP joints (SLS technique) up to a scale factor on metric dimensions of 1/25.; Cette thèse présente une étude de l’application de la fabrication additive (connue sous le nom d’impression 3D) à la mécanique des roches. Elle s’inscrit dans le cadre d’un projet plus large visant à construire un modèle physique de 2m3 d’un massif rocheux explicitement discontinu, dont le comportement est contrôlé principalement par les discontinuités. La technique de fabrication additive adoptée est le frittage laser (SLS), le matériau utilisé est un polymère : le polyamide 12 (PA12). Dans un premier temps des joints artificiels construits par SLS sont testés sous essais de cisaillement à contrainte normale constante. Deux familles de discontinuités sont étudiées. La première est formée par des joints à géométrie simplifiée (joints planaires ou en dents de scies) ayant une ouverture de 0,4mm et contenant des ponts rocheux. Les résultats montrent que cette technique de fabrication des joints en PA12 permet d’obtenir un comportement global similaire à celui des joints rocheux naturels, avec une cohésion pilotée par les ponts rocheux, et un angle de frottement dépendant de l’angle des aspérités. La deuxième famille est constituée de joints ayant des rugosités plus réalistes, auxquelles on peut attribuer une valeur de JRC, communément utilisée pour décrire les joints naturels. Cette configuration permet elle aussi de reproduire un comportement global équivalent à celui des joints naturels, avec une mobilisation des aspérités primaires et secondaires des surfaces. Les résultats obtenus sont comparés au critère de rupture de Barton-Bandis. Cette étude expérimentale est complétée par une modélisation numérique sous le logiciel UDEC, dans le but d’étudier la capacité des modèles existants à reproduire le comportement des joints artificiels obtenu expérimentalement, et de calibrer numériquement les paramètres mécaniques utilisés dans la modélisation pour représenter les essais expérimentaux. Dans un second temps, des éprouvettes cylindriques (16 x 32 cm) contenant deux ou huit discontinuités à géométrie simplifiée (planaire + ponts rocheux) sont fabriquées et testées sous compression uni-axiale. Il s’agit d’une première tentative d’un modèle réduit explicitement discontinu et contenant des joints ayant un comportement mécanique contrôlé. Les résultats permettent de mettre l’accent sur l’influence des discontinuités sur le comportement global d’un massif rocheux. Ces essais sont comparés à une modélisation numérique sous 3EDC. Finalement, et afin d’étudier l’applicabilité de cette technique à la modélisation physique, les lois de similitudes sont appliquées aux résultats obtenus dans les parties précédentes. Il en ressort qu’il est possible d’utiliser la SLS et le PA12 en modélisation physique des massifs rocheux, jusqu’un facteur d’échelle sur les dimensions métriques de 1/25.
Databáze: OpenAIRE