Beyond Polyhedral Analysis of OpenStream Programs

Autor: Nuno Miguel Nobre, Andi Drebes, Graham Riley, Antoniu Pop
Přispěvatelé: School of Computer Science [Manchester], University of Manchester [Manchester], Parallélisme de Kahn Synchrone ( Parkas), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Département d'informatique - ENS Paris (DI-ENS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: 9th International Workshop on Polyhedral Compilation Techniques
9th International Workshop on Polyhedral Compilation Techniques, Jan 2019, Valencia, Spain
University of Manchester-PURE
Popis: International audience; Polyhedral techniques are, when applicable, an effective instrument for automatic parallelization and data locality optimization of sequential programs. This paper motivates their adoption in OpenStream, a task-parallel streaming language following the dataflow model of execution. We show that (1) it is possible to exploit the parallelism that naturally arises from dataflow task graphs with loop tiling transformations provided by the polyhedral model and (2) that a combination of dataflow task-parallelism and polyhedral optimizations performs significantly better than polyhedral parallelization techniques applied to sequential programs and dataflow task-parallelism without polyhedral optimization techniques. Our technique obtains parallel speedups superior to 1.2× when compared to state-of-the-art polyhedral-tiled OpenMP, and 1.6× when compared to manually tiled OpenStream implementations , for a simple Gauss-Seidel kernel. However, stream indexing is often polynomial in the general case, severely limiting the set of OpenStream programs amenable to polyhedral tools and hindering the automation of our technique. We further investigate how the approach of Feautrier may offer a path not only to automatically convert fine-grained task-level concurrency to coarser-grained tasks, but also for scheduling under resource constraints.
Databáze: OpenAIRE