The space of Pettis integrable functions is barrelled
Autor: | Drewnoswki, Lech, Florencio Lora, Miguel, Paúl Escolano, Pedro José |
---|---|
Přispěvatelé: | Universidad de Sevilla. Departamento de Matemática Aplicada II (ETSI) |
Jazyk: | angličtina |
Rok vydání: | 1992 |
Předmět: | |
Zdroj: | idUS. Depósito de Investigación de la Universidad de Sevilla instname |
Popis: | It is well known that the normed space of Pettis integrable functions from a finite measure space to a Banach space is not complete in general. Here we prove that this space is always barrelled; this tells us that we may apply two important results to this space, namely, the Banach-Steinhaus uniform boundedness principle and the closed graph theorem. The proof is based on a theorem stating that a quasi-barrelled space having a convenient Boolean algebra of projections is barrelled. We also use this theorem to give similar results for the spaces of Bochner integrable functions. |
Databáze: | OpenAIRE |
Externí odkaz: |