The space of Pettis integrable functions is barrelled

Autor: Drewnoswki, Lech, Florencio Lora, Miguel, Paúl Escolano, Pedro José
Přispěvatelé: Universidad de Sevilla. Departamento de Matemática Aplicada II (ETSI)
Jazyk: angličtina
Rok vydání: 1992
Předmět:
Zdroj: idUS. Depósito de Investigación de la Universidad de Sevilla
instname
Popis: It is well known that the normed space of Pettis integrable functions from a finite measure space to a Banach space is not complete in general. Here we prove that this space is always barrelled; this tells us that we may apply two important results to this space, namely, the Banach-Steinhaus uniform boundedness principle and the closed graph theorem. The proof is based on a theorem stating that a quasi-barrelled space having a convenient Boolean algebra of projections is barrelled. We also use this theorem to give similar results for the spaces of Bochner integrable functions.
Databáze: OpenAIRE