MPI+OpenMP tasking scalability for the simulation of the human brain

Autor: Valero-Lara, Pedro, Sirvent, Raul, Pena, A. J., Martorell Bofill, Xavier, Labarta Mancho, Jesús José
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions, Barcelona Supercomputing Center
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
DOI: 10.1145/3236367.3236373
Popis: The simulation of the behavior of the Human Brain is one of the most ambitious challenges today with a non-end of important applications. We can find many different initiatives in the USA, Europe and Japan which attempt to achieve such a challenging target. In this work we focus on the most important European initiative (Human Brain Project) and on one of the tools (Arbor). This tool simulates the spikes triggered in a neuronal network by computing the voltage capacitance on the neurons' morphology, being one of the most precise simulators today. In the present work, we have evaluated the use of MPI+OpenMP tasking on top of the Arbor simulator. In this paper, we present the main characteristics of the Arbor tool and how these can be efficiently managed by using MPI+OpenMP tasking. We prove that this approach is able to achieve a good scaling even when computing a relatively low workload (number of neurons) per node using up to 32 nodes. Our target consists of achieving not only a highly scalable implementation based on MPI, but also to develop a tool with a high degree of abstraction without losing control and performance by using MPI+OpenMP tasking. We would like to apreciate the valuable feedback and help provided by Benjamin Cumming and Alexander Peyser. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 720270 (HBP SGA1 and HBP SGA2), from the Spanish Ministry of Economy and Competitiveness under the project Computacion de Altas Prestaciones VII (TIN2015- ´ 65316-P) and the Departament d’Innovacio, Universitats i ´ Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Programacio i Entorns d’Execuci ´ o Paral ´ ·lels (2014-SGR-1051). This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska Curie grand agreement No.749516
Databáze: OpenAIRE