Rigidité conforme des hémisphères S^4_+ et S^6_+
Autor: | Raulot, Simon |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques Raphaël Salem (LMRS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | francouzština |
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Mathematische Zeitschrift Mathematische Zeitschrift, Springer, 2012, 271 (3-4), pp.707-714. ⟨10.1007/s00209-011-0885-8⟩ |
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-011-0885-8⟩ |
Popis: | Let (M,g) be a four or six dimensional compact Riemannian manifold which is locally conformally flat and assume that its boundary is totally umbilical. In this note, we prove that if the Euler characteristic of M is equal to 1 and if its Yamabe invariant is positive, then (M,g) is conformally isometric to the standard hemisphere. As an application and using a result of Hang-Wang, we prove a rigidity result for these hemispheres regarding the Min-Oo conjecture. Comment: 8 pages, to appear in Mathematische Zeitschrift |
Databáze: | OpenAIRE |
Externí odkaz: |