Neuroprotective Action of Hypothalamic Peptide PRP-1 at Various Time Survivals Following Spinal Cord Hemisection

Autor: Galoyan, Armen A., Sarkissian, John S., Chavushyan, Vergine A., Sulkhanyan, Ruben M., Avakyan, Zaruhi E., Avetisyan, Zubeida A., Grigorian, Yuri Kh., Abrahamyan, Davit O.
Zdroj: Neurochemical Research; April 2005, Vol. 30 Issue: 4 p507-525, 19p
Abstrakt: Abstract The purpose of the present study was to evaluate the neuroprotective action of proline-rich peptide-1 (PRP-1) produced by hypothalamic nuclei cells (nuclei paraventricularis and supraopticus) following lateral hemisection of spinal cord (SC). The dynamics of rehabilitative shifts were investigated at various periods of postoperative survival (1–2, 3, and 4 weeks), both with administration of PRP-1 and without it (control). We registered evoked spike flow activity in both interneurons and motoneurons of the same segment of transected and symmetric intact sides of SC and below it on the stimulation of mixed (n. ischiadicus), flexor (n. gastrocnemius) and extensor (n. peroneus communis) nerves. In the control group (administration of 0.9% saline as placebo), no significant decrease of post-stimulus activity of neurons was observed on the transected side by the 2nd week. This activity strongly decreased by week 3 postaxotomy, with some increase on the intact side, possibly of compensatory origin. No shifts occurred by the 4th week. Regardless of the period of administration, PRP-1 increased neuronal activity on the transected side, with the same activation levels on both SC sides. These data were confirmed by histochemical investigation. PRP-1 administration, both daily and every other day, for a period of 2–3 weeks led to prevention of scar formation and promotion of the re-growth of white matter nerve fibers in the damaged area. It also resulted in prevention of neuroglial elements degeneration and reduction in gliosis expression in the lesion supporting neuronal survival. Thus, PRP-1 achieved protection against “tissue stress”, which was also confirmed by the registration of activity on the level of transection and restoration of the motor activity on the injured side. The obtained data propose the possibility of PRP-1 application in clinical practice for prevention of neurodegeneration of traumatic origin.
Databáze: Supplemental Index