Expression and intracellular processing of the 58 kDa sterol carrier protein-2/3-oxoacyl-CoA thiolase in transfected mouse L-cell fibroblasts.

Autor: Atshaves, B P, Petrescu, A D, Starodub, O, Roths, J B, Kier, A B, Schroeder, F
Zdroj: Journal of Lipid Research; April 1999, Vol. 40 Issue: 4 p610-22, 13p
Abstrakt: Although the sterol carrier protein 2 (SCP-2) gene encodes for two proteins, almost nothing is known of the function and potential processing of the larger transcript corresponding to the 58 kDa sterol carrier protein-2/3-oxoacyl-CoA thiolase (SCP-x), in intact cells. L-cell fibroblasts transfected with cDNA encoding for the 58 kDa SCP-x protein had a 4.5-fold increase in SCP-x mRNA transcript levels. Western blot analysis showed SCP-x protein expression reached 0.011% of total protein, representing a 4.1-fold increase over basal levels. Surprisingly, the 13.2 kDa SCP-2 protein also increased 2-fold in the transfected cells. This was consistent with part of the 58 kDa SCP-x being proteolytically processed to 13.2 kDa SCP-2 as there was no evidence of an mRNA transcript corresponding to a 13.2/15.2 kDa gene product in the transfected L-cell clones. Confocal immunofluorescence microscopy of transfected L-cells showed that SCP-x/SCP-2 co-localized in highest concentration with catalase in peroxisomes, but significant amounts appeared extra-peroxisomal. Overexpression of SCP-x significantly altered cholesterol uptake and metabolism. Uptake of exogenous [3H]cholesterol and total cholesterol mass were increased 1.9- and 1.4-fold, respectively, in SCP-x expressors. Although cholesterol ester mass was unaltered, incorporation of exogenous [3H]cholesterol and [3H]oleic acid into cholesteryl esters increased 2.3- and 2.5-fold, respectively. These results from intact cells suggest the 13.2 kDa SCP-2 can arise from the larger SCP-2 gene product and indicate a role for the 58 kDa SCP-x protein in cholesterol uptake and intracellular cycling.
Databáze: Supplemental Index