Abstrakt: |
Retinoid x receptor alpha (RXRalpha) serves as an active partner of peroxisome proliferator-activated receptor (PPARalpha). In order to dissect the functional role of RXRalpha and PPARalpha in PPARalpha-mediated pathways, the hepatocyte RXRalpha-deficient mice have been challenged with physiological and pharmacological stresses, fasting and Wy14,643, respectively. The data demonstrate that RXRalpha and PPARalpha deficiency are different in several aspects. At the basal untreated level, RXRalpha deficiency resulted in marked induction of apolipoprotein A-I and C-III (apoA-I and apoC-III) mRNA levels and serum cholesterol and triglyceride levels, which was not found in PPARalpha-null mice. Fasting-induced PPARalpha activation was drastically prevented in the absence of hepatocyte RXRalpha. Wy14,643-mediated pleiotropic effects were also altered due to the absence of hepatocyte RXRalpha. Hepatocyte RXRalpha deficiency did not change the basal acyl-CoA oxidase, medium chain acyl-CoA dehydrogenase, and malic enzyme mRNA levels. However, the inducibility of those genes by Wy14,643 was markedly reduced in the mutant mouse livers. In contrast, the basal cytochrome P450 4A1, liver fatty acid-binding protein, and apoA-I and apoC-III mRNA levels were significantly altered in the mutant mouse livers, but the regulatory effect of Wy14,643 on expression of those genes remained the same. Wy14,643-induced hepatomegaly was partially inhibited in hepatocyte RXRalpha-deficient mice. Wy14,643-induced hepatocyte peroxisome proliferation was preserved in the absence of hepatocyte RXRalpha. These data suggested that in comparison to PPARalpha, hepatocyte RXRalpha has its unique role in lipid homeostasis and that the effect of RXRalpha, -beta, and -gamma is redundant in certain aspects. |