Autor: |
Fu, L, Miseta, A, Hunton, D, Marchase, R B, Bedwell, D M |
Zdroj: |
Journal of Biological Chemistry; February 2000, Vol. 275 Issue: 8 p5431-40, 10p |
Abstrakt: |
Phosphoglucomutase (PGM) is a key enzyme in glucose metabolism, where it catalyzes the interconversion of glucose 1-phosphate (Glc-1-P) and glucose 6-phosphate (Glc-6-P). In this study, we make the novel observation that PGM is also involved in the regulation of cellular Ca(2+) homeostasis in Saccharomyces cerevisiae. When a strain lacking the major isoform of PGM (pgm2Delta) was grown on media containing galactose as sole carbon source, its rate of Ca(2+) uptake was 5-fold higher than an isogenic wild-type strain. This increased rate of Ca(2+) uptake resulted in a 9-fold increase in the steady-state total cellular Ca(2+) level. The fraction of cellular Ca(2+) located in the exchangeable pool in the pgm2Delta strain was found to be as large as the exchangeable fraction observed in wild-type cells, suggesting that the depletion of Golgi Ca(2+) stores is not responsible for the increased rate of Ca(2+) uptake. We also found that growth of the pgm2Delta strain on galactose media is inhibited by 10 microM cyclosporin A, suggesting that activation of the calmodulin/calcineurin signaling pathway is required to activate the Ca(2+) transporters that sequester the increased cytosolic Ca(2+) load caused by this high rate of Ca(2+) uptake. We propose that these Ca(2+)-related alterations are attributable to a reduced metabolic flux between Glc-1-P and Glc-6-P due to a limitation of PGM enzymatic activity in the pgm2Delta strain. Consistent with this hypothesis, we found that this "metabolic bottleneck" resulted in an 8-fold increase in the Glc-1-P level compared with the wild-type strain, while the Glc-6-P and ATP levels were normal. These results suggest that Glc-1-P (or a related metabolite) may participate in the control of Ca(2+) uptake from the environment. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|