Abstrakt: |
The Paradigm shift in considering CO2as an alternative carbon feedstock as opposed to a waste product has recently prompted intense research activities. The implementation of CO2utilization may be achieved by designing highly efficient catalysts, exploring processes that minimize energy consumption and simplifying product purification and separation. Among possible target products derived from CO2, methanol is highly valuable because it can be used in various chemical feedstocks and as a fuel. Although it is currently produced on a plant scale by heterogeneous catalysis using a Cu/ZnO-based catalyst, a limited theoretical conversion ratio at high reaction temperatures remains an issue. In addition, a catalytic system that can be adjusted to accommodate a variable renewable energy source for the synthesis of methanol is more desirable than current continuous-operation systems, which require a reliable energy supply. Recently, significant progress has been made in the field of homogeneous catalysis, which primarily relies on an indirect route to synthesize methanol via the hydrogenation of carbonate or formate derivatives in the presence of additives and solvents. However, homogeneous catalysis is inappropriate for industrial-scale methanol production because of the inefficient separation and purification processes involved. |