Neocarzinostatin acts as a sensitive probe of DNA microheterogeneity: switching of chemistry from C-1' to C-4' by a G.T mismatch 5' to the site of DNA damage.

Autor: Kappen, L S, Goldberg, I H
Zdroj: Proceedings of the National Academy of Sciences of the United States of America; August 1992, Vol. 89 Issue: 15 p6706-6710, 5p
Abstrakt: The diradical form of thiol-activated neocarzinostatin chromophore resides in the minor groove of DNA, where it has access to hydrogen atoms at the C-5', C-1', and C-4' positions of deoxyribose on each strand. In a dodecamer oligodeoxyribonucleotide containing the sequence AGC.GCT, a bistranded lesion staggered two nucleotides in the 3' direction, is generated that consists primarily of an abasic site (2'-deoxyribonolactone) at the C due to 1' chemistry and a direct strand break at the T due to 5' chemistry. Sequencing-gel analysis reveals that 72% of the damage at the C results from 1' chemistry with minor lesions consisting of a strand break due to 5' chemistry (15%) and 4' chemistry (less than 2%) and an abasic site (4'-hydroxylation product) (12%) due to 4' chemistry. Replacement of the G.C base pair 5' to the C by a G.T wobble mismatch results in a remarkable switching of the chemistry of damage at the C from C-1' to C-4'. The 1' chemistry is almost eliminated and replaced by 4' chemistry, so that the latter accounts for 64% of the damage, mainly in the form of the 4'-hydroxylation product (abasic site) and a smaller amount of the DNA fragment with a phosphoglycolate at the 3' end (strand break). Substitution of the radiation sensitizer misonidazole for dioxygen markedly enhances partitioning of the 4' chemistry in favor of the glycolate-containing product. On the complementary strand the G.T mismatch results in an increase in 4' chemistry at the T residue, but 5' chemistry remains the main mechanism. When a G.A mismatch is inserted 5' to the C, there is a marked decrease in all damage at this site without detectable switching of chemistry. These results show that the diradical form of thiol-activated neocarzinostatin chromophore acts as sensitive probe of DNA microheterogeneity.
Databáze: Supplemental Index