Molecular characteristics of cytostatic factors in amphibian egg cytosols

Autor: Shibuya, Ellen K., Masui, Yoshio
Zdroj: Development; August 1989, Vol. 106 Issue: 4 p799-808, 10p
Abstrakt: In amphibians, zygotes microinjected with cytosol of unactivated eggs are arrested at metaphase of mitosis. The factor responsible for this effect has been designated ‘cytostatic factor, (CSF)’. CSF is inactivated by Ca2+ addition to cytosols. During storage of the Ca2+-containing cytosols, a stable CSF activity develops. Therefore, the first Ca2+-sensitive CSF and the second Ca2+-insensitive CSF have been referred to as primary CSF (CSF-1) and secondary CSF (CSF-2), respectively. We have partially purified CSF-1, which had been stabilized with NaF and ATP, and CSF-2 from cytosols of Rana pipiens eggs by ammonium sulphate (AmS) precipitation and sucrose density gradient centrifugation or gel filtration, and investigated their molecular characteristics. CSF-1 was sensitive to protease, but resistant to RNAse, and inactivated within 2h at 25°C. CSF-1 could be sedimented in a sucrose density gradient from a fresh cytosol or its crude fraction precipitated at 20-30% saturation of AmS, showing the sedimentation coefficient 3S. When analyzed by SDS-polyacrylamide gel electrophoresis (PAGE), all the proteins in partially purified CSF-1 samples entered the gel and were separated into numerous peptide bands. In contrast, CSF-2 was an extremely large molecule, being eluted from Sepharose columns as molecules larger than 2×106, and failed to enter the gel when analyzed by SDS-PAGE. It could be purified 40 times from cytosols. CSF-2 was a highly stable molecule, being neither inactivated nor dissociated at pH 11’5 or by 4m-NaCl and L1C1 and 8 M-urea. It was also resistant to RNAse treatment. However, CSF-2 could be broken down into small peptides of variable sizes by trypsin, a-chymotrypsin, and papain, but not by S. aureus V8 protease, although it was less sensitive to proteases than CSF-1. The dose-dependency test showed that the activity of CSF-2 is independent of its concentration and that an amount of CSF-2 could cause cleavage arrest earlier when injected into a blastomere in a larger volume.
Databáze: Supplemental Index