Autor: |
Rao, G. Sethuram, Vydeki, D. |
Zdroj: |
International Journal of Medical Engineering and Informatics; 2021, Vol. 13 Issue: 6 p461-473, 13p |
Abstrakt: |
Brain diseases caused due to malignant are the biggest concern among all the age groups. Studies show that almost 80% of death cases are reported due to presence of malignant tumour. Hence diagnosing brain tumour at an early stage would increase the survival rate. Magnetic resonance imaging (MRI) plays a major role in diagnosing tumours in human brain. However, it is considered to be a time consuming and tedious process which could lead to deviation in the opinion of radiologists. This has led to the development of computer-based automatic extraction of tumour cells from the images obtained by MRI. This paper proposes an efficient tumour detection mechanism from MR images using morphological processing and unified algorithm. A neural network that uses bounding boxes and associated class probabilities detects the packets of tumour that exist in a full MR image. Simulated results of the proposed technique on the BRATS 2016 dataset show that a detection accuracy of 95.97% is achieved, while reducing the likelihood of false positives. This approach is compared with other detection methods such as DPM and R-CNN and the analysis proves that our method proposed outclasses the other detection methods. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|