Abstrakt: |
Phorbol esters bind with high affinity to protein kinase C (PKC) isozymes as well as to two novel receptors, n-chimaerin and Unc-13. The cysteine-rich regions present in these proteins were identified as the binding sites for the phorbol ester tumor promoters and the lipophilic second messenger sn-diacylglycerol. A 50-amino-acid peptide comprising the second cysteine-rich region of PKC δ, expressed in Escherichia colias a glutathione S-transferase (GST)-fusion protein, bound phorbol 12,13-dibutyrate (PDBu) with high affinity (Kd=0.8 nM). Using the cDNA of that cysteine-rich region as a template, a series of 37 point mutations was generated by site-directed mutagenesis, and the mutated proteins were analyzed quantitatively for binding of [3H]PDBu and, as appropriate, for binding of the ultrapotent analog [3H]bryostatin 1. Mutants displayed one of three patterns of behavior: phorbol ester binding was completely abolished, binding affinity was reduced, or binding was not significantly modified. As expected, five of the six cysteines as well as the two histidines involved in Zn2+coordination are critical for the interaction of the protein with the phorbol esters. In addition, mutations in several positions, including phenylalanine 3, tyrosine 8, proline 11, leucines 20, 21, and 24, tryptophan 21, glutamine 27, and valine 38 drastically reduced the interaction with the ligands. The effect of these mutations can be rationalized from the three-dimensional (NMR) structure of the cysteine-rich region. In particular, the C-terminal portion of the protein does not appear to be essential, and the loop comprising amino acids 20 to 28 is implicated in the binding activity. |