Autor: |
Kawai, Y, Graham, S M, Whitsel, C, Arinze, I J |
Zdroj: |
Journal of Biological Chemistry; September 1985, Vol. 260 Issue: 19 p10826-10832, 7p |
Abstrakt: |
Guanine nucleotide-dependent modulation of agonist binding to the beta-receptor reflects coupling of the receptor to the nucleotide regulatory protein. Similarly, guanine nucleotide-dependent stimulation of adenylate cyclase can be used as an index of coupling between the regulatory protein and the catalytic unit of the cyclase. Using both approaches we have studied coupling in the beta-adrenergic receptor-adenylate cyclase system in rabbit liver during neonatal development. With [3H]dihydroalprenolol as ligand, the Bmax was relatively unchanged (200-300 fmol/mg of protein) between birth and end of day 1 and was similar to adult values. Guanyl-5‘-yl imidodiphosphate-dependent shift in agonist (l-isoproterenol) competition curves was biphasic, decreasing from 10-fold in membranes isolated from animals at term to about 6-fold in membranes from 6-h-old neonates, and increasing progressively in older animals to a maximal measurable value of 42-fold in the adult. The ability of guanyl-5‘-yl imidodiphosphate, GTP, GTP plus isoproterenol, NaF, or forskolin to activate adenylate cyclase was also biphasic and age-dependent. With Mn2+ the measured activity was not at any time greater than the activity at term. Pretreatment of membranes with cholera toxin resulted in differential levels of enhancement of adenylate cyclase activity wherein much lower enhancement was observed in membranes from neonatal animals. With [32P]NAD as substrate, cholera toxin-catalyzed ADP-ribosylation of membranes indicated development-dependent accumulation of Ns peptides. From these results we suggest that there is a decreased efficiency in the coupling of the beta-adrenergic receptor to hepatic adenylate cyclase in early neonatal life. The molecular basis for the biphasic nature of the coupling is presently unclear. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|