Autor: |
Ju, G., Collins, L., Kaffka, K.L., Tsien, W.H., Chizzonite, R., Crowl, R., Bhatt, R., Kilian, P.L. |
Zdroj: |
Journal of Biological Chemistry; April 1987, Vol. 262 Issue: 12 p5723-5731, 9p |
Abstrakt: |
To locate functional domains of the interleukin-2 (IL-2) protein, a cDNA clone encoding biologically active human IL-2 was mutagenized using synthetic oligonucleotides to incorporate defined amino acid substitutions and deletions in the mature protein. The IL-2 analogs were then produced in Escherichia coli and assayed for the ability to induce proliferation of IL-2-dependent cells and the ability to compete for binding to the IL-2 receptor. Our analysis of over 50 different mutations demonstrated that the integrity of at least three regions of the IL-2 molecule is required for full biological activity: the NH2 terminus (residues 1-20), the COOH terminus (residues 121-133), and 2 of the 3 cysteine residues (58 and 105). Deletion of the NH2-terminal 20 amino acids or the COOH-terminal 10 amino acids resulted in the loss of greater than 99% of bioactivity and binding. Amino acid substitutions at specific positions in these regions also resulted in proteins which retained less than 1% activity. The NH2 terminus and an adjacent internal region were recognized by neutralizing anti-IL-2 antibodies. In combination with the results from epitope competition analysis with neutralizing antibodies, these data are consistent with the IL-2 protein being folded such that the NH2 terminus, the COOH terminus, and the internal 30- to 60-region are juxtaposed to form the binding site recognized by the IL-2 receptor. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|