Autor: |
Dreger, Nathan Z., Wandel, Mary B., Robinson, Lindsay L., Luong, Derek, Søndergaard, Claus S., Hiles, Michael, Premanandan, Christopher, Becker, Matthew L. |
Zdroj: |
ACS Biomaterials Science & Engineering; 20240101, Issue: Preprints |
Abstrakt: |
New polymers are needed to address the shortcomings of commercially available materials for soft tissue repair. Herein, we investigated a series of l-valine-based poly(ester urea)s (PEUs) that vary in monomer composition and the extent of branching as candidate materials for soft tissue repair. The preimplantation Young’s moduli (105 ± 30 to 269 ± 12 MPa) for all the PEUs are comparable to those of polypropylene (165 ± 5 MPa) materials currently employed in hernia-mesh repair. The 2% branched poly(1-VAL-8) maintained the highest Young’s modulus following 3 months of in vivo implantation (78 ± 34 MPa) when compared to other PEU analogues (20 ± 6–45 ± 5 MPa). Neither the linear or branched PEUs elicited a significant inflammatory response in vivo as noted by less fibrous capsule formation after 3 months of implantation (80 ± 38 to 103 ± 33 µm) relative to polypropylene controls (126 ± 34 µm). Mechanical degradation in vivo over three months, coupled with limited inflammatory response, suggests that l-valine-based PEUs are translationally relevant materials for soft tissue applications. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|