Recombinant alpha 1-proteinase inhibitor blocks antigen- and mediator-induced airway responses in sheep.

Autor: Mario, Scuri, Yelena, Botvinnikova, T, Lauredo Isabel, M, Abraham William
Zdroj: Journal of Applied Physiology; December 2002, Vol. 93 Issue: 6 p1900-6, 7p
Abstrakt: alpha(1)-Proteinase inhibitor (alpha(1)-PI) is a natural serine protease inhibitor. Although mainly thought to protect the airways from neutrophil elastase, alpha(1)-PI may also regulate the development of airway hyperresponsiveness (AHR), as indicated by our previous findings of an inverse relationship between lung alpha(1)-PI activity and the severity of antigen-induced AHR. Because allergic stimulation of the airways causes release of elastase, tissue kallikrein, and reactive oxygen species (ROS), all of which can reduce alpha(1)-PI activity and contribute to AHR, we hypothesized that administration of exogenous alpha(1)-PI should protect against pathophysiological airway responses caused by these agents. In untreated allergic sheep, airway challenge with elastase, xanthine/xanthine oxidase (which generates ROS), high-molecular-weight kininogen, the substrate for tissue kallikrein, and antigen resulted in bronchoconstriction. ROS and antigen also induced AHR to inhaled carbachol. Treatment with 10 mg of recombinant alpha(1)-PI (ralpha(1)-PI) blocked the bronchoconstriction caused by elastase, high-molecular-weight kininogen, and ROS, and the AHR induced by ROS and antigen. One milligram of ralpha(1)-PI was ineffective. These are the first in vivo data demonstrating the effects of ralpha(1)-PI. Our results are consistent with and extend findings obtained with human plasma-derived alpha(1)-PI and suggest that alpha(1)-PI may be important in the regulation of airway responsiveness.
Databáze: Supplemental Index