Monotonicity conjecture on permanents of doubly stochastic matrices

Autor: Lih, Ko Wei, Wang, Edward T. H.
Zdroj: Proceedings of the American Mathematical Society; 1981, Vol. 82 Issue: 2 p173-178, 6p
Abstrakt: A stronger version of the van der Waerden permanent conjecture asserts that if $ {J_n}$ $ n \times n$ and $ A$ $ n \times n$ $ {\text{per}}(\lambda A + (1 - \lambda ){J_n})$ is nondecreasing in the interval $ [0,1]$ and in the case when, up to permutations of rows and columns, either (i) $ A = {J_s} \oplus {J_t}$, $ t$ or (ii) $ A = \left[\begin{smallmatrix}0 & Y \\ Y^T & Z\end{smallmatrix} \right]$ $ s \times s$ is $ s \times t$, and $ Z$ $ t \times t$ $ (t - s)/{t^2}$ $ 0 < s \leqslant t$.
Databáze: Supplemental Index