Abstrakt: |
In order to control output powers generated by doubly fed induction generator (DFIG) used in wind application (WA) many previous studies, mainly based on flux orientation control (FOC) and neglecting resistance to get a simple model of DFIG with decoupled axis. However, this control strategy requires several hypotheses: low and stability of grid voltage in order to orientated the statoric flux, high power of generator to neglecting statoric resistance. As a result that may not be present in realty due to direct connection between stator and the grid In addition to the presence of resistance, whatever the power of the generator, therefore the DFIG represents a complex model and required a nonlinear control without previous approaches closer to reality to respond highly against DFIG nonlinear model, this is the first paper presents a novel strategy to control nonlinear model of DFIG based on substitution method to solving (d,q) coupled axes without flux orientation and neglecting resistance (FOANR) and also does not take into account stability of grid voltage, for produce required reference active and reactive power by controlling the voltage of rotor side converter (RSC), using classical proportional-integral (PI) controller in a non-linear synthesis form by three methods :direct control (D) and indirect open loop (IOL) and indirect with power loop (IWPL),we compared three controls and check their performance towards the real model of DFIG to verify our control and proving its effectiveness without previous approaches. Finally, the simulation results of the studied controls are presented, analyzed and compared.in terms of power reference tracking, robustness to the parametric variation and the ability to respond to sudden wind speed variation. [ABSTRACT FROM AUTHOR] |