Comparison of crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te nanocrystalline thin films: Effects of homogeneous irradiation with an electron beam.

Autor: Masayuki Takashiri, Kazuo Imai, Masato Uyama, Harutoshi Hagino, Saburo Tanaka, Koji Miyazaki, Yoshitake Nishi
Předmět:
Zdroj: Journal of Applied Physics; 2014, Vol. 115 Issue 21, p214311-1-214311-7, 7p, 1 Black and White Photograph, 1 Chart, 4 Graphs
Abstrakt: The effects of homogenous electron beam (EB) irradiation on the crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te thin films were investigated. Both types of thin films were prepared by flash evaporation, after which homogeneous EB irradiation was performed at an acceleration voltage of 0.17MeV. For the n-type thin films, nanodots with a diameter of less than 10nm were observed on the surface of rice-like nanostructures, and crystallization and crystal orientation were improved by EB irradiation. The resulting enhancement of mobility led to increased electrical conductivity and thermoelectric power factor for the n-type thin films. In contrast, the crystallization and crystal orientation of the p-type thin films were not influenced by EB irradiation. The carrier concentration increased and mobility decreased with increased EB irradiation dose, possibly because of the generation of defects. As a result, the thermoelectric power factor of p-type thin films was not improved by EB irradiation. The different crystallization behavior of the n-type and p-type thin films is attributed to atomic rearrangement during EB irradiation. Selenium in the n-type thin films is more likely to undergo atomic rearrangement than the other atoms present, so only the crystallinity of the n-type Bi-Se-Te thin films was enhanced. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index