Identification of glacial melt water runoff in a karstic environment and its implication for present and future water availability.

Autor: Finger, D., Hugentobler, A., Huss, M., Voinesco, A., Wernli, H., Fischer, D., Weber, E., Jeannin, P.-Y., Kauzlaric, M., Wirz, A., Vennemann, T., Hüsler, F., Schädler, B., Weingartner, R.
Zdroj: Hydrology & Earth System Sciences Discussions; 2013, Vol. 10 Issue 3, p2743-2788, 46p, 1 Color Photograph, 1 Diagram, 4 Charts, 6 Graphs, 3 Maps
Abstrakt: Glaciers all over the world are expected to continue to retreat due to the global warming throughout the 21st century. Consequently, future seasonal water availability might become scarce once glacier areas have declined below a certain threshold affecting future water management strategies. Particular attention should be paid to glaciers located in a karstic environment, as parts of the melt water can be drained by souterrain karst systems. In this study tracer experiments, karst modeling and glacier melt modeling are combined in order to identify flow paths in a high alpine, glacierized, karstic environment (Glacier de la Plaine Morte, Switzerland) and to investigate current and predict future downstream water availability. Flow paths through the karst underground were determined with natural and fluorescent tracers. Subsequently, tracer results and geologic information were assembled in a karst model. Finally, glacier melt projections driven with a climate scenario were performed to discuss future water availability in the area surrounding the glacier. The results suggest that during late summer glacier melt water is rapidly drained through well-developed channels at the glacier bottom to the north of the glacier, while during low flow season melt water enters into the karst and is drained to the south. Climate change projections reveal that by the end of the century glacier melt will be significantly reduced in the summer, jeopardizing water availability in glacier-fed karst springs. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index