ON LOCALIZATION AND RIEMANN-ROCH NUMBERS FOR SYMPLECTIC QUOTIENTS.

Autor: JEFFREY, LISA C., KIRWAN, FRANCES C.
Předmět:
Zdroj: Quarterly Journal of Mathematics; 1996, Vol. 47 Issue 2, p165-185, 21p
Abstrakt: The article presents a study which describes the localization numbers in Riemann-Roch functions for compact symplectic quotients. It explores the Lie algebra in Hamiltonian fashion with maximal torus and worst final quotient singularities. It implies that the dimension of the main torus through quantization conjecture is equivalent to the Reimann-Roch numbers.
Databáze: Complementary Index