Abstrakt: |
Diamond-like carbon (DLC) coatings are used in automotive engines for decreasing friction and increasing durability. There are many variants of DLC films which provide a wide range of mechanical, physical and tribological properties. The films can be extremely hard (>90 GPa), give low coefficients of friction against a number of counterfaces and exhibit low wear coefficients. The films are often considered to be chemically inert. The properties of DLC films depend to a large degree on the relative proportions of graphitically- (sp2) and diamond-like (sp3)-bonded carbon but the inclusion of elements such as hydrogen, nitrogen, silicon, tungsten, titanium, fluorine and sulphur can dramatically change their tribological response. Two different types of DLC, a WC/C amorphous hydrogenated DLC (WC/C a-C : H) coating and an amorphous hydrogenated DLC (a-C : H) have been investigated. The mechanical and tribological properties have been evaluated by nanoindentation, scratch and wear testing and friction testing in an instrumented cam-tappet testing rig. The deformation mechanisms and wear processes have been evaluated by scanning electron and atomic force microscopy. The results show that the harder a-C : H film was more wear resistant than the softer WC/C a-C : H film and performed better in the cam-tappet testing rig. [ABSTRACT FROM AUTHOR] |