Autor: |
Layfield, Joshua P., Owens, Matthew D., Troya, Diego |
Předmět: |
|
Zdroj: |
Journal of Chemical Physics; 5/21/2008, Vol. 128 Issue 19, p194302, 12p, 1 Diagram, 4 Charts, 6 Graphs |
Abstrakt: |
We present a theoretical study of the reactions of hydrogen atoms with methane and ethane molecules and isotopomers. High-accuracy electronic-structure calculations have been carried out to characterize representative regions of the potential-energy surface (PES) of various reaction pathways, including H abstraction and H exchange. These ab initio calculations have been subsequently employed to derive an improved set of parameters for the modified symmetrically-orthogonalized intermediate neglect of differential overlap (MSINDO) semiempirical Hamiltonian, which are specific to the H+alkane family of reactions. The specific-reaction-parameter (SRP) Hamiltonian has then been used to perform a quasiclassical-trajectory study of both the H+CH4 and H+C2H6 reactions. The calculated values of dynamics properties of the H+CH4→H2+CH3 reaction and isotopologues, including alkyl product speed distributions, diatomic product internal-state distributions, and cross sections, are generally in good agreement with experiment and with the results provided by the ZBB3 PES [Z. Xie et al., J. Chem. Phys. 125, 133120 (2006)]. The results of trajectories propagated with the SRP Hamiltonian for the H+C2H6→H2+C2H5 reaction also agree with experiment. The level of agreement between the results calculated with the SRP Hamiltonian and experiment in both the H+methane and H+ethane reactions indicates that semiempirical Hamiltonians can be improved for not only a specific reaction but also a family of reactions. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|