Nanomechanics of silicon surfaces with atomic force microscopy: An insight to the first stages of plastic deformation.

Autor: Garcia-Manyes, Sergi, Güell, Aleix G., Gorostiza, Pau, Sanz, Fausto
Předmět:
Zdroj: Journal of Chemical Physics; 9/15/2005, Vol. 123 Issue 11, p114711, 7p, 2 Charts, 5 Graphs
Abstrakt: The use of stiff cantilevers with diamond tips allows us to perform nanoindentations on hard covalent materials such as silicon with atomic force microscopy. Thanks to the high sensitivity in the force measurements together with the high resolution upon imaging the surface, we can study nanomechanical properties. At this scale, the surface deforms, following a simple non-Hertzian spring model. The plastic onset can be assessed from a discontinuity in the force-distance curves. Hardness measurements with penetration depths as small as 1 nm yield H=∼25 GPa, thus showing a drastic increase with penetration depths below 5 nm. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index