Selective electrosynthesis of hydroxylamine from aqueous nitrate/nitrite by suppressing further reduction.

Autor: Tang, Yirong, Jiang, Zhan, Yuan, Yubo, Xu, Li, Jin, Chuyao, Chen, Bulin, Lin, Zhichao, Zao, Jie, Du, Jianwei, Zhang, Xiao, Gao, Xiang, Liang, Yongye
Předmět:
Zdroj: Nature Communications; 11/12/2024, Vol. 15 Issue 1, p1-10, 10p
Abstrakt: The electrocatalytic reduction of nitrogenous waste offers a sustainable approach to producing nitrogen-containing chemicals. The selective synthesis of high-value hydroxylamine (NH2OH) is challenging due to the instability of NH2OH as an intermediate. Here, we present a rational electrocatalyst design strategy for promoting NH2OH electrosynthesis by suppressing the competing pathways of further reduction. We screen zinc phthalocyanines (ZnPc) with a high energy barrier for NH2OH reduction by regulating their intrinsic activity. Additionally, we discover that carbon nanotube substrates exhibit significant NH3-producing activity, which can be effectively inhibited by the high coverage of ZnPc molecules. In-situ characterizations reveal that NH2OH and HNO are generated as intermediates in nitrate reduction to NH3, and NH2OH can be enriched in the ZnPc electrode. In the H-cell, the optimized ZnPc catalyst demonstrates a Faradaic efficiency (FE) of 53 ± 1.7% for NH2OH with a partial current density exceeding 270 mA cm−2 and a turnover frequency of 7.5 ± 0.2 s−1. It also enables the rapid electrosynthesis of cyclohexanone oxime from nitrite with a FE of 64 ± 1.0%. Electroreduction of nitrate or nitrite offers an appealing route for hydroxylamine synthesis but remains challenging due to its intermediate nature. Here, authors present a selective and fast electrosynthesis of hydroxylamine by tuning metal phthalocyanine activity and removing side reaction sites. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index