Targeted partial reprogramming of age-associated cell states improves markers of health in mouse models of aging.

Autor: Sahu, Sanjeeb Kumar, Reddy, Pradeep, Lu, Jinlong, Shao, Yanjiao, Wang, Chao, Tsuji, Mako, Delicado, Estrella Nuñez, Rodriguez Esteban, Concepcion, Belmonte, Juan Carlos Izpisua
Předmět:
Zdroj: Science Translational Medicine; 9/11/2024, Vol. 16 Issue 764, p1-9, 9p
Abstrakt: Aging is a complex multifactorial process associated with epigenome dysregulation, increased cellular senescence, and decreased rejuvenation capacity. Short-term cyclic expression of octamer-binding transcription factor 4 (Oct4), sex-determining region Y-box 2 (Sox2), Kruppel-like factor 4 (Klf4), and cellular myelocytomatosis oncogene (cMyc) (OSKM) in wild-type mice improves health but fails to distinguish cell states, posing risks to healthy cells. Here, we delivered a single dose of adeno-associated viruses (AAVs) harboring OSK under the control of the cyclin-dependent kinase inhibitor 2a (Cdkn2a) promoter to specifically partially reprogram aged and stressed cells in a mouse model of Hutchinson-Gilford progeria syndrome (HGPS). Mice showed reduced expression of proinflammatory cytokines and extended life spans upon aged cell–specific OSK expression. The bone marrow and spleen, in particular, showed pronounced gene expression changes, and partial reprogramming in aged HGPS mice led to a shift in the cellular composition of the hematopoietic stem cell compartment toward that of young mice. Administration of AAVs carrying Cdkn2a-OSK to naturally aged wild-type mice also delayed aging phenotypes and extended life spans without altering the incidence of tumor development. Furthermore, intradermal injection of AAVs carrying Cdkn2a-OSK led to improved wound healing in aged wild-type mice. Expression of CDKN2A-OSK in aging or stressed human primary fibroblasts led to reduced expression of inflammation-related genes but did not alter the expression of cell cycle–related genes. This targeted partial reprogramming approach may therefore facilitate the development of strategies to improve health and life span and enhance resilience in the elderly. Editor's summary: Partial cellular reprogramming via cyclic expression of octamer-binding transcription factor 4, sex-determining region Y-box 2, Kruppel-like factor 4, and cellular myelocytomatosis oncogene (OSKM) improves health and life span in mouse models but may lead to tumor induction or organ damage. Here, Sahu and colleagues used adeno-associated viruses to deliver OSK under the control of the cyclin-dependent kinase inhibitor 2a (Cdkn2a) promoter to specifically target stressed and senescent cells in a mouse model of Hutchinson-Guilford progeria syndrome. Treatment extended life spans and improved overall fitness, associated with a shift in the transcriptome toward that seen in younger mice. Similar effects occurred in aged wild-type mice and treatment did not increase tumor occurrence, suggesting that targeting partial cellular reprogramming to specific cell populations may be a more viable rejuvenation strategy moving forward. —Melissa L. Norton [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index