The role of bacterial size, shape and surface in macrophage engulfment of uropathogenic E. coli cells.

Autor: Peterson, Elizabeth, Söderström, Bill, Prins, Nienke, Le, Giang H. B., Hartley-Tassell, Lauren E., Evenhuis, Chris, Grønnemose, Rasmus Birkholm, Andersen, Thomas Emil, Møller-Jensen, Jakob, Iosifidis, Gregory, Duggin, Iain G., Saunders, Bernadette, Harry, Elizabeth J., Bottomley, Amy L.
Předmět:
Zdroj: PLoS Pathogens; 9/6/2024, Vol. 20 Issue 9, p1-32, 32p
Abstrakt: Uropathogenic Escherichia coli (UPEC) can undergo extensive filamentation in the host during acute urinary tract infections (UTIs). It has been hypothesised that this morphological plasticity allows bacteria to avoid host immune responses such as macrophage engulfment. However, it is still unclear what properties of filaments are important in macrophage-bacteria interactions. The aim of this work was to investigate the contribution of bacterial biophysical parameters, such as cell size and shape, and physiological parameters, such as cell surface and the environment, to macrophage engulfment efficiency. Viable, reversible filaments of known lengths and volumes were produced in the UPEC strain UTI89 using a variety of methods, including exposure to cell-wall targeting antibiotics, genetic manipulation and isolation from an in vitro human bladder cell model. Quantification of the engulfment ability of macrophages using gentamicin-protection assays and fluorescence microscopy demonstrated that the ability of filaments to avoid macrophage engulfment is dependent on a combination of size (length and volume), shape, cell surface and external environmental factors. UTI89 filamentation and macrophage engulfment efficiency was also found to occur independently of the SOS-inducible filamentation genes, sulA and ymfM in both in vivo and in vitro models of infection. Compared to filaments formed via antibiotic inhibition of division, the infection-derived filaments were preferentially targeted by macrophages. With several strains of UPEC now resistant to current antibiotics, our work identifies the importance of bacterial physiological and morphological states during infection. Author summary: Urinary tract infections (UTIs) are one of the most common bacterial infections worldwide with 50% of women suffering from a UTI during their lifetime. Escherichia coli is the primary bacteria responsible for UTIs and is usually found in short rod forms. However, during UTIs E. coli can elongate into extremely long thin shapes called 'filaments'. Filaments are thought to be advantageous during infections because they are too long to be engulfed and killed by immune cells called macrophages. Due to increasing antibiotic resistance in bacteria there is a strong need for the discovery of new ways to treat infections and this is only possible once we thoroughly understand the mechanisms bacteria employ to overcome our immune response. Therefore, we investigated the effect of E. coli filamentation on macrophage engulfment along with other aspects of bacteria reported to influence engulfment. We found that the ability of filaments to avoid macrophage engulfment is dependent on a combination of size (length and volume), shape, surface and external environmental factors. Our research has highlighted the importance of bacterial shape changes during infections and provided a foundational understanding of macrophage engulfment of filaments. Eventually, this knowledge may reveal new targets for treatment of infections. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index
Nepřihlášeným uživatelům se plný text nezobrazuje