Abstrakt: |
Trace concentrations of dyes are often present in textile wastewater streams and present a serious environmental problem. Thus, these dyes must be removed from wastewater either by degradation or sequestration prior to discharge of the wastewater into the environment. Existing processes to remove these wastewater contaminants include the use of solid sorbents to sequester dyes or the use of biochemical or chemical methods of dye degradation. However, these processes typically generate their own waste products, are not necessarily rapid because of the low dye concentration, and often use expensive or non-recyclable sequestrants or reagents. This paper describes a simple, recyclable, liquid–liquid extraction scheme where ionic dyes can be sequestered into poly(α-olefin) (PAO) solvent systems. The partitioning of anionic and cationic dyes from water into PAOs is facilitated by ionic PAO-phase anchored sequestering agents that are readily prepared from commercially available vinyl-terminated polyisobutylene (PIB). This is accomplished by a sequence of reactions involving hydroboration/oxidation, conversion of an alcohol into an iodide, and conversion of the resulting primary alkyl iodide into a cationic nitrogen derivative. The products of this synthetic sequence are cationic nitrogen iodide salts which serve as anionic sequestrants that are soluble in PAO. These studies showed that the resulting series of cationic PIB-bound cationic sequestering agents facilitated efficient extraction of anionic, azo, phthalein, and sulfonephthalein dyes from water into a hydrocarbon PAO phase. Since the hydrocarbon PAO phase is completely immiscible with water and the PIB derivatives are also insoluble in water, neither the sequestration solvent nor the sequestrants contaminate wastewater. The effectiveness and efficiency of these sequestrations were assayed by UV–visible spectroscopy. These spectroscopic studies showed that extraction efficiencies were in most cases >99%. These studies also involved procedures that allowed for the regeneration and recycling of these PAO sequestration systems. This allowed us to recycle the PAO solvent system for at least 10 sequential batch extractions where we sequestered sodium salts of methyl red and 4′,5′-dichlorofluorescein dyes from water with extraction efficiencies of >99%. These studies also showed that a PIB-bound derivative of the sodium salt of 1,1,1-trifluoromethylpentane-2,4-dione could be prepared from a PIB-bound carboxylic acid ester by a Claisen-like reaction and that the sodium salt of this β-diketone could be used to sequester cationic dyes from water. This PIB-bound anion rapidly and efficiently extracted >99% of methylene blue, malachite green, and safranine O from water based on UV–visible and 1H NMR spectroscopic assays. [ABSTRACT FROM AUTHOR] |