Abstrakt: |
Background: Understanding human stem cell differentiation into osteoblasts and osteoclasts is crucial for bone regeneration and disease modeling. Numerous morphological techniques have been employed to assess this differentiation, but a comprehensive review of their application and effectiveness is lacking. Methods: Guided by the PRISMA framework, we conducted a rigorous search through the PubMed, Web of Science and Scopus databases, analyzing 254 articles. Each article was scrutinized against pre-defined inclusion criteria, yielding a refined selection of 14 studies worthy of in-depth analysis. Results: The trends in using morphological approaches were identified for analyzing osteoblast and osteoclast differentiation. The three most used techniques for osteoblasts were Alizarin Red S (mineralization; six articles), von Kossa (mineralization; three articles) and alkaline phosphatase (ALP; two articles) followed by one article on Giemsa staining (cell morphology) and finally immunochemistry (three articles involved Vinculin, F-actin and Col1 biomarkers). For osteoclasts, tartrate-resistant acid phosphatase (TRAP staining) has the highest number of articles (six articles), followed by two articles on DAPI staining (cell morphology), and immunochemistry (two articles with VNR, Cathepsin K and TROP2. The study involved four stem cell types: peripheral blood monocyte, mesenchymal, dental pulp, and periodontal ligament. Conclusion: This review offers a valuable resource for researchers, with Alizarin Red S and TRAP staining being the most utilized morphological procedures for osteoblasts and osteoclasts, respectively. This understanding provides a foundation for future research in this rapidly changing field. [ABSTRACT FROM AUTHOR] |