Abstrakt: |
Soil salinization has damaged the soil biological environment and chemical structure, resulting in a decline in soil quality and crop yields, which has caused harm to the ecological environment and human health, and severely hindered the development of the economy. In this experiment, using the 'Ningdan 33' maize seeds as materials, the maize was treated with histidine and salt stress (100 mM NaCl), and photosynthesis, photosynthetic enzyme activity, relative expression of photosynthetic genes of maize were measured. The anatomical structure of the leaves was also observed. The study explored the impact of exogenous histidine treatment on the photosynthesis of maize under salt stress. When the concentration of histidine sprayed on the leaves was 0.5 mM, it had the best effect on promoting photosynthesis in maize under salt stress. 0.5 mM histidine significantly improved the photosynthetic performance (PN, gs, E, Chl a/Chl b) of maize under salt stress, significantly improved photosynthesis efficiency (Fv/Fm, ΔF/F'm, qP were significantly increased. NPQ was significantly decreased), significantly increased the activity of photosynthetic enzymes (PEPC, NADP-ME, PPDK, Rubisco) and the relative expression of photosynthetic genes (ZmPEPC, ZmNADP-ME, ZmPPDK, ZmRCA), increased the length of the vascular bundle in the cross-section of the leaf, played a certain protective role on the vascular bundle, and improved the efficiency of material transportation under salt stress. Based on the above analysis, 0.5 mM histidine can significantly improve the tolerance of maize under salt stress, which has great application value for planting maize in saline environments. [ABSTRACT FROM AUTHOR] |