Certain differential identities on prime rings and Banach algebras.
Autor: | De Filippis, Vincenzo, Hermas, Abderrahman, Oukhtite, Lahcen |
---|---|
Zdroj: | Rendiconti del Circolo Matematico di Palermo (Series 2); Aug2024, Vol. 73 Issue 5, p2107-2120, 14p |
Abstrakt: | Let R be a prime ring and L a Lie ideal of R. The purpose of this paper is to classify generalized derivations F 1 , F 2 , F 3 of R satisfying the following differential identity F 1 (x) ⊥ F 2 (y) = F 3 (x) ⊥ y f o r a l l x , y ∈ L , where ⊥ represents either the Lie product [.,.], or the Jordan product ∘ . Furthermore, as an application, the same identities are studied locally on nonvoid open subsets of prime Banach algebras. [ABSTRACT FROM AUTHOR] |
Databáze: | Complementary Index |
Externí odkaz: |