Abstrakt: |
We have recently witnessed the rapid development of several emerging technologies, including the internet of things, which lead to a high interest in wireless sensor networks. Tiny sensor nodes are now important parts of a large number of complex systems, with numerous applications, including military, environment monitoring, and surveillance and body area sensor networks. A wireless sensor network builds the core part for IoT. Besides this, lifetime maximization is the biggest challenge in the wireless sensor network. Also, In a wireless sensor network, it is difficult to find an optimal node deployment approach that would minimize costs, be robust to node failures, decrease computing overhead and communication, and maintain a high degree of coverage and network connectivity. There is numerous literature addressed this challenge which is discussed in this paper; still there are lot many challenges yet to be addressed. Considering this scenario, in this paper, we propose a scheduled-based node deployment algorithm using Firefly Optimization (FA) to offer a circumstance where we have a group of target points that satisfy p-coverage and sensor nodes that satisfy q-connectivity, with subject to the selection of the optimal number of a sensor node that has the highest energy and minimum distance. The multiple parameters as no. of sensor nodes, distance, survivability factors, coverage, and connectivity of the sensor nodes are considered for designing the fitness function. A comprehensive statistical analysis is done using the simulation results to prove the proposed scheme's efficiency with other existing state-of-the-art methods under various p-coverage and q-connectivity configurations. [ABSTRACT FROM AUTHOR] |