Abstrakt: |
The microbial biosynthesis of proteins, primary metabolites, and chemicals is gaining extraordinary momentum and is presently viewed as an advancing approach in the industrial research sector. Increased threats to the environment and the possibility of declining petroleum assets have switched the spotlight to microbial cell factories (MCFs). Aside from possessing various advantages over chemical synthesis, such as less toxicity, cheaper methodologies, and an environmentally benign nature, microbes can be cultivated in fermenters, resulting in an effective bioprocessing approach in terms of industrial relevance. As the overwhelming majority of biodiversity is microbial, this review first highlights the microbial biodiversity of industrially vital microorganisms. Then, the paper delineates the production pathways for generating valuable bioproducts via microbial workhorses. Many host cells synthesize bio-compounds as a part of their natural mechanism; however, several techniques have also been developed to attain the desired end product from non-native microbes with selected properties. The microbial biosynthetic pathways can be categorized as native-existing pathways, heterologous pathways, and artificial de novo pathways. Systems metabolic engineering, which integrates metabolic engineering with evolutionary engineering, synthetic biology, and systems biology, has further revolutionized the field of engineering robust phenotypes. The employment of these strategies improves the performance of the strain, eventually achieving high titer and productivity rates of bio-chemicals. Modern trends and tools for exploiting native pathways and designing non-native-created pathways are also briefly discussed in this paper. Finally, the review discusses the use of microbial workhorses for producing a myriad of materials and chemicals, including carboxylic acids, amino acids, plant natural products (PNPs), carotenoids, flavors, and fragrances, unveiling the efficacy of utilizing microbial species to generate sustainable bio-based products. [ABSTRACT FROM AUTHOR] |