Abstrakt: |
Recently, titanium and its alloys have been widely used in industry. Titanium alloys are difficult to machine due to high tool wear, cutting temperature, and edge formation. Thus, this analysis predicts how machining parameters, particularly drilling parameters, affect titanium work piece integrity. This study used Taguchi and fuzzy control software to calculate the effects of cutting parameters and drill tip angle on surface roughness maximal temperature in titanium alloy workpieces during dry drilling. Three 10 mm cutting tools have 106°, 118°, and 130° tip angles. Cutting tools are made of high-speed steel. The work piece model is a parallelogram with 100 mm width, 150 mm length, and 30 mm thickness. Cutting settings include three spindle speeds 500, 1000, and 1500 rpm with 0.1, 0.2, and 0.3 mm/rev feed rates. All simulations have the same hole depth (4 mm). We also estimated and discussed the rate of temperature change due to cutting settings. This prediction is used to diagnose and improve drilling, increase tool life, and safeguard the work piece. This reduces titanium drilling costs and effort. The machining model's work piece temperature is influenced by spindle speed and tool tip angle, but feed rate has no effect. Drillers can optimize drilling performance and obtain desired results including efficient penetration rates, shortened drilling time, and reduced equipment failure by regulating these parameters. Fuzzy Logic predicts drilling parameters on Titanium work pieces with encouraging results. [ABSTRACT FROM AUTHOR] |