Autor: |
Hart, Christopher J. S., Riches, Andrew G., Tiash, Snigdha, Clapper, Erin, Ramu, Soumya, Zuegg, Johannes, Ryan, John H., Skinner-Adams, Tina S. |
Předmět: |
|
Zdroj: |
Biomedicines; Dec2022, Vol. 10 Issue 12, p3182, 14p |
Abstrakt: |
On an annual basis the flagellate protozoan, Giardia duodenalis, is responsible for an estimated one billion human infections of which approximately two hundred million cause disease. However, the treatment of Giardia infections is reliant on a small group of chemotherapeutic classes that have a broad spectrum of antimicrobial activity and increasing treatment failure rates. To improve this situation, we need new drugs. In this study we screened the Compounds Australia Scaffolds Library for compounds with potent and selective activity against these parasites. Unlike previous drug discovery efforts that have focused on drug repurposing, this library is comprised of commercially available synthetic compounds arranged into lead-like scaffolds to facilitate structure activity relationship assessments and de novo drug discovery. A screen of 2451 compounds in this library identified 40 hits (>50% inhibitory activity at 10 µM, over 48 h). Secondary testing identified three compounds with IC50 values <1 μM and >50-fold selectivity for parasites over mammalian cells and a hit series, CL9406, comprising compounds with potent (lowest IC50 180 nM) and selective activity for Giardia parasites. The most promising compound in this series, SN00797640, displayed selective activity against assemblage A, B, and metronidazole resistant parasites which was parasiticidal (minimum lethal concentration 625 nM) and synergistic with albendazole. SN00797640 was well-tolerated when administered to mice at doses of 50 mg/kg daily for three days paving the way for pre-clinical in vivo activity assessment. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|