Identification of distinct functional thymic programming of fetal and pediatric human γδ thymocytes via single-cell analysis.

Autor: Sanchez Sanchez, Guillem, Papadopoulou, Maria, Azouz, Abdulkader, Tafesse, Yohannes, Mishra, Archita, Chan, Jerry K. Y., Fan, Yiping, Verdebout, Isoline, Porco, Silvana, Libert, Frédérick, Ginhoux, Florent, Vandekerckhove, Bart, Goriely, Stanislas, Vermijlen, David
Předmět:
Zdroj: Nature Communications; 10/4/2022, Vol. 13 Issue 1, p1-19, 19p
Abstrakt: Developmental thymic waves of innate-like and adaptive-like γδ T cells have been described, but the current understanding of γδ T cell development is mainly limited to mouse models. Here, we combine single cell (sc) RNA gene expression and sc γδ T cell receptor (TCR) sequencing on fetal and pediatric γδ thymocytes in order to understand the ontogeny of human γδ T cells. Mature fetal γδ thymocytes (both the Vγ9Vδ2 and nonVγ9Vδ2 subsets) are committed to either a type 1, a type 3 or a type 2-like effector fate displaying a wave-like pattern depending on gestation age, and are enriched for public CDR3 features upon maturation. Strikingly, these effector modules express different CDR3 sequences and follow distinct developmental trajectories. In contrast, the pediatric thymus generates only a small effector subset that is highly biased towards Vγ9Vδ2 TCR usage and shows a mixed type 1/type 3 effector profile. Thus, our combined dataset of gene expression and detailed TCR information at the single-cell level identifies distinct functional thymic programming of γδ T cell immunity in human. Knowledge about the ontogeny of T cells in the thymus relies heavily on mouse studies because of difficulty to obtain human material. Here the authors perform a single cell analysis of thymocytes from human fetal and paediatric thymic samples to characterise the development of human γδ T cells in the thymus. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index