Abstrakt: |
The object of the study is coal sludge and coal fines of the Shubarkol deposit and the Kuznetsk coal basin (Republic of Kazakhstan) for the production of coal-water fuel, which allows replacing liquid and gaseous expensive products. The resulting fuel (after treatment of coal seams and burial) from industrial waste should not harm the environment, which requires certain economic investments. For crushing coal and coal sludge in the crushing and grinding unit, an electrohydroimpulse device for fine grinding of materials was used, consisting of a control unit with a protection system, a pulse capacitor and a high-voltage generator (capacitor bank capacity 0.75 μF, pulse discharge voltage 15–30 kV, length of the interelectrode distance 7–10 mm). After grinding, fine coal particles rise to the surface of the water, and impurities settle at the bottom of the device, which allows enriching the product (flotation). Surface structures and coal fraction sizes were obtained using a Tescan Mira 3 scanning electron microscope. The main characteristics of coal-water fuel during vortex combustion were: the diameter of the fraction 0–250 microns – 63–74 %, process water – 36–24 %, special additive – 1–2 %. Coal-water fuel is similar to liquid fuel, and when transferring heat-generating plants to combustion of suspension, no significant changes in the design of boilers (units) are required. This makes it easy to mechanize and automate the processes of receiving, feeding and burning fuel, and the vortex combustion technology at a temperature of 950– 1050°C guarantees fuel efficiency of more than 97 %. The given optimal parameters of electrohydroimpulse technology when introduced into production will allow not only grinding, but also enriching the coal product [ABSTRACT FROM AUTHOR] |