Reconstruction of Arctic sea ice thickness and its impact on sea ice forecasting in the melting season.

Autor: Lu Yang, Hongli Fu, Xiaofan Luo, Shaoqing Zhang, Xuefeng Zhang
Zdroj: Cryosphere Discussions; 6/2/2022, p1-40, 40p
Abstrakt: Generally, the sea ice prediction skills can be improved via assimilating available observations of the sea ice concentration (SIC) and the sea ice thickness (SIT) into a numerical forecast model to update the initial fields of the model. However, due to the lack of SIT satellite observations in the melting season, only SIC fields in the forecast model can be directly updated, which will bring about the dynamical mismatch between SIC and SIT to affect the model prediction accuracy. In order to solve this problem, a statistically based bivariate regression model of SIT, named as BRMT, is tentatively established based on the grid reanalysis data of SIC and SIT, to reconstruct the daily Arctic sea ice thickness data. Both BRMT-constructed SIT and several popular reanalysis datasets are compared to each other and validated based on available SIT observations in situ. Results show that BRMT can effectively reproduce the spatial and temporal changes of ice thickness in the melting season, and BRMT-constructed SIT is more accurate in capturing the change trend of ice thickness over a period of time, also the reconstructed SIT of one-year ice and multi-year ice types in the central Arctic and E Greenland Sea are closer to the observations. Further, as SIT from BRMT and SIC from satellite remote sensing are jointly assimilated into the ice-sea coupled numerical model, the prediction accuracy of SIC and SIT in the Arctic melting season is significantly improved, especially the SIC in the marginal ice zone and SIT in the central Arctic. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index